авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 || 3 | 4 |   ...   | 5 |

Нестационарные процессы деградации в щелочных аккумуляторах, закономерности и технологические рекомендации

-- [ Страница 2 ] --

В подразделах один – четыре первого раздела дан обзор работ по исследованию теплового разгона в НК, никель-металлогидридных, никель-водородных, свинцово-кислотных, литиевых, литий-ионных и литий-полимерных аккумуляторах. Отмечено, что в целом тепловой разгон является малоизученным процессом, хотя это явление в литиевых аккумуляторах изучено значительно лучше, чем в аккумуляторах других систем.

В данной работе показано, что в процессе эксплуатации НК аккумуляторов в их электродах накапливается очень большое количество водорода, что ведет к деградации электродов. Накопление водорода в электродах приводит к тепловому разгону, а также в целом ухудшает эксплуатационные характеристики аккумуляторов. Поэтому во втором разделе сделан обзор веществ, способных поглощать водород. В подразделах один – два второго раздела дан обзор работ по исследованию таких веществ. В частности дана классификация и общая характеристика накопителей водорода. Рассмотрены исследования процесса накопления водорода в металлогидридах, в углеродных материалах (графит, сажа), которые являются наполнителями в ламельных, намазных и прессованных электродах щелочных аккумуляторов.

В третьем разделе дан обзор работ по исследованию возникновения и роста дендритов через сепараторы и влиянию их на основные параметры аккумуляторов, а также методов борьбы с образованием дендритов в аккумуляторах. Процесс накопления дендритов в сепараторах является одним из исследуемых в данной работе процессов деградации аккумуляторов. Накопление дендритов в сепараторах приводит к тепловому разгону аккумуляторов, а также в целом ухудшает их эксплуатационные характеристики. Так как накопление дендритов в щелочных аккумуляторах является одной из причин ТР, то методы борьбы с образованием дендритов будут одновременно и методами борьбы с ТР. Обычно для борьбы с образованием дендритов используют методы:

-модификация состава или конструкции электродов;

-покрытие электродов пленкой;

-введение, в электролит различных добавок, включая поверхностно активные;

-создание новых сепараторов, включая комбинированные;

-использование новых переменноточных режимов заряда.

В четвертом разделе дан обзор работ по моделированию различных процессов в аккумуляторах и приведена классификация используемых моделей.

При описании процессов в аккумуляторах обычно используют следующие модели: статистические, динамические, конструктивные, структурные.

При статистическом моделировании, на основании экспериментальных данных строится функция регрессии. Такое моделирование используется на начальных этапах исследования какого-либо объекта, когда о нем ничего не известно. При конструктивном моделировании, модель явления или процесса, конструируется на основании разумных предположений, экспериментальных фактов, а также с применением тех или иных физических или химических законов, т.е. данные модели с самого начала строго не опираются на фундаментальные динамические законы природы. При динамическом моделировании, модель строится с самого начала, опираясь на фундаментальные законы природы. Как правило, моделирование выполняется или в рамках макрооднородной модели пористого электрода, или в рамках модели отдельной поры.

Особую группу моделей составляют структурные модели электрохимических явлений. Структурный подход впервые был применен при моделировании процессов в теории импеданса. В настоящее время он с успехом применяется при моделировании явлений в аккумуляторах, причем в сугубо нелинейных областях в отличие от теории импеданса.

Вторая глава состоит из десяти разделов и посвящена исследованию процесса теплового разгона в щелочных аккумуляторах.

В первом разделе на основании анализа литературных источников намечен план экспериментальных исследований. Во втором разделе описана методика циклирования щелочных аккумуляторов с целью обнаружения теплового разгона. Все аккумуляторы заряжались последовательно при постоянных напряжениях: 1,45; 1,67; 1,87; 2,2 В. Нижнее значение исследуемого диапазона зарядных напряжений соответствует буферному напряжению работы аккумуляторов. В третьем разделе описана установка для циклирования аккумуляторов и сбора выделяющегося в результате теплового разгона газа и пара.

В четвертом разделе дана классификация всех существующих аккумуляторов по типу электродов, плотности их упаковки, герметичности и т.д. В результате все аккумуляторы для дальнейших исследований были разбиты на четыре группы: не герметичные аккумуляторы с металлокерамическими оксидно-никелевыми электродами, в этой же группе рассматривались и аккумуляторы с прессованными и намазными оксидно-никелевыми электродами; не герметичные аккумуляторы с ламельными электродами; герметичные призматические аккумуляторы; герметичные цилиндрические и дисковые аккумуляторы.

В пятом разделе описаны результаты циклирования аккумуляторов с металлокерамическими, прессованными и намазными оксидно-никелевыми электродами (с металлокерамическими электродами (НКБН-25-У3, НКБН-40-У3, 2НКБ-32, 2НКБ-15, НКБН-6, НКБН-3.5), с намазными электродами (НКБН-3,5), с прессованными электродами (2КНП-24, 2КНП-20, 3ШНКП-10М-0,5, 2КНБ-2) (по 10 штук каждого типа). Заряд производился при постоянных напряжениях, отмеченных выше, а разряд и контрольно-тренировочные циклы (для исключения эффектов памяти при смене режимов заряда) в соответствии с инструкцией по эксплуатации конкретных батарей.

На основании проведенных экспериментальных исследований установлено, что ТР довольно редкое явление. Из 640 выполненных зарядно-разрядных циклов для каждого типа аккумуляторов, ТР наблюдался только в двух случаях для аккумуляторов НКБН-25-У3, в двух случаях для НКБН-40-У3 и по одному случаю для аккумуляторов 2НКБ-32 и 2НКБ-15.

Вероятность появления ТР увеличивается с ростом срока эксплуатации аккумуляторов, так как во всех случаях, когда наблюдался ТР, аккумуляторы имели сроки эксплуатации, как правило, больше пяти лет при гарантийном сроке службы в три года. При малых сроках эксплуатации аккумуляторов, ТР никогда не наблюдался.

Вероятность возникновения ТР повышается с ростом напряжения заряда аккумуляторов, так как во всех случаях когда наблюдался ТР, заряд аккумуляторов выполнялся при напряжениях 1,87 В и 2,2 В, что значительно превышает среднее напряжение эксплуатации данных аккумуляторов на объекте в буферном режиме (1,35-1,5 В).

В аккумуляторах с намазными (НКБН-3.5), и прессованными электродами (2КНП-24, 2КНП-20, 3ШНКП-10М-0,5, 2КНБ-2) тепловой разгон не наблюдался. Это может быть связано как с типом электродов, так и с типом используемых сепараторов. В данных аккумуляторах используются сепараторы из толстых тканей. Так как процесс прорастания дендритов кадмия сильно зависит от толщины сепаратора, структуры и диаметра пор, то с увеличением толщины сепаратора и уменьшением диаметра пор процесс существенно замедляется, а дендриты получаются не достаточно надежными для разогрева электродов и запуска теплового разгона.

В экспериментах не пошли на ТР аккумуляторы малой емкости с металлокерамическими электродами (НКБН-6, НКБН-3,5 (керамика)), намазными (НКБН-3,5) и прессованными (2КНБ-2). По всей вероятности для начала ТР важна общая масса аккумуляторов и общий ток заряда.

В подразделах один – пять, пятого раздела выполнены также экспериментальные исследования по измерению параметров аккумуляторов НКБН-25-У3, НКБН-40-У3, 2НКБ-32 и 2НКБ-15 в процессе ТР. Определялись изменение следующих параметров: зарядного тока, напряжения на клеммах аккумуляторов, температуры электродов аккумуляторов, динамики газовыделения.

Исследования показали, что в процессе теплового разгона ток заряда резко возрастает до очень больших значений 6-14Q (Q – номинальная емкость аккумулятора), а затем, резко падает, вследствие выкипания электролита и резкого соответствующего возрастания внутреннего сопротивления аккумуляторов.

Процесс ТР может возникать неоднократно и спонтанно в течение одного заряда (рис. 1), при этом ток заряда то возрастает, то убывает. Возникновение и затухание процесса ТР в каком-либо месте электрода приведет сначала к резкому росту тока заряда, а затем к такому же резкому падению тока вследствие испарения электролита и образования газовой пробки в прогоревшем участке сепаратора. Это, в свою очередь, приведет к увеличению плотности тока в других местах электродов, что является причиной запуска ТР в другом месте, возможно, между другой парой электродов и т.д.

После ТР ток в аккумуляторе может стать или очень маленьким, это можно объяснить резким возрастанием внутреннего сопротивления аккумулятора вследствие выкипания электролита и образования газовых пробок между электродами, или очень большим, вследствие закорачивания электродов в местах сильного прогорания сепараторов рис.1.

Рис. 1. Изменения параметров аккумулятора НКБН-25-У3 во время теплового разгона: I ток заряда аккумулятора; Ua напряжение на клеммах аккумулятора; Т температура положительной клеммы аккумулятора

В процессе ТР напряжение на клеммах аккумулятора резко падает примерно до 0,5 В. Данное падение напряжения нельзя объяснить только уменьшением внутреннего сопротивления аккумулятора. Единственным объяснением может быть, только предположение, что тепловой разгон связан с протеканием мощной электрохимической реакции, идущей при более низкой разности потенциалов электродов, чем реакция заряда аккумуляторов.

Температура электродов в процессе ТР резко возрастает до очень больших значений (больше 250 0С). При этом однажды полиамидный корпуса аккумулятора НКБН-25-У3 полностью расплавился и загорелся, в других случаях корпус только оплавлялся.

В результате ТР из аккумулятора в течении 2-4 минут выделяется большое количество парогазовой смеси состоявшей на 70-77 % из газа, на 23-30 % из водяного пара. Состав, парогазовой смеси представлен в табл. 1.

Выделившийся в результате теплового разгона газ имел состав: водорода 85-95 %, кислорода 4-14 %, прочих газов менее 1 %. Если предположить, что в результате теплового разгона происходит разложение воды, то в газовой смеси должно быть 33,3 % кислорода и 66,7 % водорода. Экспериментальные результаты показали, что водорода намного больше. Это можно объяснить, только предположив, что водород уже присутствовал в электродах в какой-то форме еще до теплового разгона, а в результате теплового разгона, возможно из-за высокой температуры, он выделился в больших количествах.

Таблица 1

Состав газовой смеси, выделившейся в результате теплового разгона

Тип аккумулятора Номер аккумулятора Общее количество газовой смеси, выделившейся в результате ТР, л Количество выделившегося пара, л Оставшийся газ, л
НКБН-25-У3 1 351 63 288
2 342 60 282
НКБН-40-У3 1 490 107 383
2 506 112 394
НКБ-32 1 410 70 340
НКБ-15 1 205 31 174


Pages:     | 1 || 3 | 4 |   ...   | 5 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.