авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:   || 2 | 3 | 4 | 5 |

Полимерные композиционные короноэлектреты

-- [ Страница 1 ] --

На правах рукописи

ГАЛИХАНОВ МАНСУР ФЛОРИДОВИЧ

ПОЛИМЕРНЫЕ КОМПОЗИЦИОННЫЕ КОРОНОЭЛЕКТРЕТЫ

05.17.06 Технология и переработка полимеров и композитов

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

доктора технических наук

Казань – 2009

Работа выполнена в Государственном образовательном учреждении высшего профессионального образования «Казанский государственный технологический университет» (ГОУ ВПО «КГТУ»)

Научный консультант: доктор технических наук, профессор Дебердеев Рустам Якубович
Официальные оппоненты: доктор физико-математических наук, профессор Сажин Борис Иванович доктор технических наук, профессор Абдрахманова Ляйля Абдулловна доктор химических наук, профессор Амирова Лилия Минниахметовна
Ведущая организация: Санкт-Петербургский государственный технологический институт (технический университет), г. Санкт-Петербург

Защита диссертации состоится 1 июля 2009 года в __ часов на заседании диссертационного совета Д 212.080.01 при ГОУ ВПО «Казанский государственный технологический университет по адресу: 420015, г. Казань, ул. К. Маркса, д. 68, Зал заседаний Ученого совета.

С диссертацией можно ознакомиться в фундаментальной библиотеке Казанского государственного технологического университета.

Автореферат разослан «___» ____________ 2009 года

Ученый секретарь

диссертационного совета Е.Н. Черезова

Актуальность работы. В последнее время стремительно растет объем применения полимерных электретов – диэлектриков создающих в окружающем пространстве сильное электростатическое поле. Диапазон их использования простирается от бытовой техники до техники специального назначения. Это электроакустические (электретные микрофоны, сурдотелефоны (головные телефоны для слабослышащих), гидрофоны и т.д.), электромеханические преобразователи (электретные звукосниматели, сенсорные переключатели, ударные датчики и т.д.), электретные воздушные фильтры и многое другое. В последнее время открываются и новые области применения электретов: в медицине (в качестве антитромбогенных имплантантов), в машиностроении (в узлах трения, уплотнения, системах защиты от коррозии) и т.д.

Метод коронного разряда на сегодняшний день является наиболее распространенным в производстве полимерных электретов. Преимуществами коронной электризации являются простота аппаратуры, довольно высокая скорость процесса и равномерное распределение зарядов по поверхности.

Полимеры, как основной материал для создания электретов, во многих случаях не обладают необходимыми механическими, теплофизическими и другими свойствами, необходимыми для их практического применения. В то же время жизнь требует материалы с новыми свойствами. Поэтому для получения электретных материалов с заданными свойствами целесообразно применять композиции, состоящие из полимерного связующего и наполнителей различной природы. При наполнении полимеров дисперсными наполнителями в композиционных материалах возникают новые структурные элементы, способные служить ловушками носителей зарядов, что обуславливает изменение электретных характеристик диэлектриков.

Однако, несмотря на широкую номенклатуру и все растущую сферу технического применения полимерных композиционных материалов, строгого теоретического и экспериментального обоснования их поляризации нет, общие закономерности изменения электретных свойств полимеров при наполнении не определены. В результате, в настоящее время практическое использование полимерных композиционных электретов опережает их теоретическую интерпретацию. В связи с этим изучение особенностей поляризации композитов различного состава является актуальным и своевременным.

Работа выполнена в соответствии с заданиями Министерства образования РФ 2003 года «Исследование методов получения активной упаковочной пленки со специальными свойствами для пищевых продуктов» и 2008 года «Теоретические основы создания новых полимерных материалов с заданными свойствами», при финансовой поддержке Академии наук Республики Татарстан (грант 20-21/2006(Г) на проект «Применение метода диэлектрической спектроскопии для исследования структуры и свойств полимерных электретных материалов») и РФФИ (грант 08-02-90051 на проект «Изучение процессов индуцированного переноса заряда в электретных полимерных композитах»).

Целью работы явилось изучение электретного эффекта в полимерных композиционных материалах.

Для достижения поставленной цели были определены следующие задачи:

- изучить влияние дисперсных наполнителей различной природы на электретные характеристики термопластичных полимеров;

- оценить и смоделировать распределение инжектированного заряда по объему короноэлектрета;

- изучить электретные свойства двухслойных плёночных материалов;

- изучить электретные свойства смесей термопластичных полимеров и оценить влияние структуры на их свойства;

- найти новые области применения полимерных композиционных короноэлектретов.

Научная новизна работы. Показана возможность создания электретных материалов с ярко выраженным электретным эффектом на основе крупнотоннажных термопластичных полимеров с 2 – 6 об. % наполнителей различной природы.

Впервые обнаружены высокоэнергетические ловушки захвата инжектированных носителей заряда в полимерных композиционных материалах, разрушающиеся только при температурах выше температур плавления (текучести) полимеров.

Впервые обнаружен эффект сохранения электретных свойств полимерных композиционных материалов после одновременного воздействия повышенных температур и деформации.

Создана многоуровневая модель релаксации электретного заряда в полимерах и полимерных композиционных материалах, основанная на разделении протекающих механизмов релаксации гомозаряда, гетерозаряда и поляризации Максвелла-Вагнера (на границе раздела фаз). Это позволило впервые показать долю гомо-, гетерозаряда и поляризации Максвелла-Вагнера в проявлении электретного эффекта в материалах различного типа (полимерах, композиционных и многослойных материалах).

Разработан новый подход к оценке распределения гомо- и гетерозаряда по объему диэлектрика, заключающийся в создании двухслойного короноэлектрета с последующим измерением его электретных свойств до и после удаления верхнего слоя с помощью растворителя.

Впервые показано, что смеси полимеров характеризуются экстремальной зависимостью электретных свойств от состава с ярко выраженными одним (для смесей неполярного полимера с полярным) или двумя (для смесей двух неполярных полимеров) максимумами.

Впервые обнаружен факт влияния нижнего слоя двухслойного полимерного короноэлектрета на его свойства. Показано, что у двухслойных пленок на основе различных полимеров электретные характеристики ухудшаются с ростом полярности полимерной подложки.

Впервые показана возможность прогнозирования увеличения срока хранения ряда пищевых продуктов в активной упаковке из полимерного композиционного короноэлектрета через изучение их микробиологического состава.

Практическая ценность работы. По результатам работы разработаны полимерные материалы с высокими и стабильными электретными характеристиками, которые могут найти применение в традиционных областях использования электретов.

Предложена новая технология получения полимерных изделий с электретными свойствами – получение листового или пленочного полимерного композиционного короноэлектрета с последующей переработкой его в изделия различного назначения методами пневмо-, вакуумформования, штампования.

Разработан упаковочный материал нового типа на базе крупнотоннажных полимерных материалов для пищевых продуктов, продлевающий срок их хранения без использования химических консервантов. Он обладает улучшенной миграционной стойкостью и термосвариваемостью по сравнению с традиционными материалами. Эффективность применения активной электретной полимерной упаковки подтверждена протоколом Испытательного центра ГУ «Республиканская ветеринарная лаборатория» Республики Татарстан.

Апробация работы. Результаты работы доложены на V Международной конференции «Нефтехимия - 99» (г. Нижнекамск, 1999 г.); Всероссийской и Международной научно-технических конференциях «Композиционные материалы в авиастроении и народном хозяйстве» (г. Казань, 1999 и 2001 гг.); третьей и четвертой Международных конференциях «Электрическая изоляция» (г. Санкт-Петербург, 2002 и 2006 гг.); юбилейной научно-методической конференции «III Кирпичниковские чтения» (г. Казань, 2003 г.); Х, XII и XIII Всероссийских конференциях «Структура и динамика молекулярных систем» (Яльчик, 2003, 2005 и 2006 гг.); XVII Менделеевском съезде по общей и прикладной химии» (г. Казань, 2003 г.); третьей Всероссийской Каргинской конференции «Полимеры-2004» (г. Москва, 2004 г.); Международной конференции «Композит-2004» (г. Саратов, 2004 г.); второй Всероссийской научно-технической конференции «Высокоэффективные пищевые технологии, методы и средства для их реализации» (г. Москва, 2004 г.); III Всероссийской научной конференции с международным участием «Физико-химия процессов переработки полимеров» (г. Иваново, 2006 г.); IV Всероссийской Каргинской конференции «Наука о полимерах 21-му веку» (г. Москва, 2007 г.); XI Международной конференции «Физика диэлектриков» (г. Санкт-Петербург, 2008 г.); III Международной научно-технической конференции «Полимерные композиционные материалы и покрытия» (г. Ярославль, 2008 г.); научных сессиях Казанского государственного технологического университета (г. Казань, 1999 – 2009 гг.) и др.

Личный вклад автора. Результаты теоретических и экспериментальных исследований, включенные в диссертацию, получены автором лично или при его непосредственном участии или руководстве. Автор определял направление исследований, выбор объектов и методов исследования, участвовал в обсуждении полученных результатов, предлагая их интерпретацию и формулируя выводы. Автор пользовался поддержкой и советами профессоров Гарипова Руслана Мирсаетовича, Гольдаде Виктора Антоновича и Гороховатского Юрия Андреевича, которым выражает глубокую благодарность.

Публикации. По результатам выполненных исследований опубликовано 33 статьи в журналах из списка ВАК, 48 статей в журналах, сборниках трудов, материалах научных конференций, 90 тезисов докладов конференций различного уровня. Список наиболее значимых публикаций приведен в автореферате.

Структура и объем работы. Диссертация состоит из введения, 7 глав и выводов. Работа изложена на 399 страницах, содержит 146 рисунков, 54 таблицы и список литературы из 489 ссылок.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

В первой главе рассмотрены основные виды электретов, методы их получения и применение в различных областях машиностроения, электроники.

Во второй главе описаны объекты и методы исследования.

В работе были использованы полиэтилен высокого давления (ПЭВД), полиэтилен низкого давления (ПЭНД), полистирол (ПС), полипропилен (ПП), ударопрочный полистирол (УПС), сополимеры этилена с винилацетатом (СЭВА) с различным содержанием винилацетатных групп, бутадиен-нитрильные каучуки (СКН), сополимер винилхлорида с винилацетатом (СВХВА), полиэтилентерефталат (ПЭТФ), статистический сополимер винилиденфторида и трифторхлорэтилена (Фторопласт-32Л), поликарбонат (ПК), триацетатцеллюлозы (ТАЦ), полипропиленкарбонат (ППК), поливинилхлорид (ПВХ), статистический сополимер этилена с пропиленом (СКЭП), тройной сополимер этилена, пропилена и дициклопентадиена (СКЭПТ), натрий-бутадиеновый каучук (СКБ), парафин нефтяной твёрдый. В качестве наполнителей использовали дисперсные порошки: технический углерод, белила титановые, белила цинковые, пудра алюминиевая, порошок медный, графит, сажа белая, аэросил, мел, мраморная мука, тальк, фторопласт–4, сегнетоэлектрики (СЭ) – нитрит натрия, дигидрофосфат калия, сульфат аммония, сегнетова соль, нитрат калия, титанат бария. В качестве растворителей использовались вода дистиллированная, ацетон (диметилкетон), изооктан, толуол, диметилформамид, глицерин, циклогексанон. В качестве объектов исследования использовались также молочные, хлебобулочные, мясные продукты, плоды и овощи.

Полимерные композиции получали смешением на лабораторных микровальцах с регулируемыми электрообогревом. Образцы изготавливали в виде пленок и пластин толщиной 0,1–1,2 мм прессованием на гидравлическом прессе в соответствии с ГОСТ 12019-66. Дублирование пленок осуществляли на гидравлическом прессе в ограничительной рамке без давления. Нанесение полимерных покрытий осуществляли из растворов.

Перед электретированием образцы подвергались предварительному прогреву в термошкафу. Охлаждение образцов проводилось в поле отрицательного коронного разряда.

Электретную разность потенциалов поверхности UЭРП измеряли компенсационным методом с помощью вибрирующего электрода по ГОСТ 25209-82. Измерение потенциала поверхности Vэ, напряженности электрического поля Е и поверхностной плотности заряда эф проводили методом периодического экранирования приемного электрода, находящегося на некотором расстоянии от поверхности электрета.

Измерение токов термостимулированной деполяризации (ТСД) осуществлялось пикоамперметром при линейном нагреве с помощью специальной измерительной ячейки с блокирующими алюминиевыми электродами и тефлоновой прокладкой. Регистрацию и визуализацию спектра ТСД осуществляли на персональном компьютере.

Измерение и расчет объемного V и удельного поверхностного электрического сопротивления S проводили в соответствии с ГОСТ 6433.2-71.

Для определения фазовой структуры смеси полимеров использовали метод селективного растворения и оптической микроскопии. Снятие ИК-спектров пленок полимеров проводили на спектрометре «SPECORD 75 IR».

О суммарной миграции судили по экстракции мигрирующих веществ из исследуемых полимерных пленок. О качестве продуктов питания судили по показателям, определенным соответствующими ГОСТами.

В третьей главе приводятся и обсуждаются результаты, полученные на основе изучения полимерных и композиционных короноэлектретов.

В основе метода поляризации диэлектриков с помощью коронного разряда лежит перенос носителей заряда из области электрического разряда в воздушном (газовом) зазоре на поверхность диэлектрика и фиксирование их на энергетических поверхностных и объемных ловушках. Поверхностными ловушками могут служить химически активные примеси, специфические поверхностные дефекты, вызванные процессами окисления, адсорбированные молекулы, различия в порядке расположения молекул на поверхности и в объеме. Возникновение объемных ловушек может быть связано также с наличием примесей, дефектов мономерных единиц, нерегулярностей в цепях и несовершенств кристаллических образований. Ловушками также могут служить граница раздела фаз и свободный объем полимера.

Дешевизна и распространенность ряда крупнотоннажных полимеров (полиэтилена, полипропилена, полистирола и др.) делает их очень перспективными материалами для получения короноэлектретов. Не случайно, большое количество работ по изучению электретного эффекта в диэлектриках посвящено этим полимерам.

Преимуществами полимерных материалов является возможность относительно легкого управления их свойствами путем модификацией наполнителями различной природы, пластификаторами, другими добавками. Этим приемом пользуются и для изменения их электретных характеристик. Так, для изменения или придания сегнето- или пьезоэлектрических свойств полимерам в их состав вводят неорганические сегнетоэлектрики. Однако данных об изменении электретных свойств полимеров при наполнении подобными веществами в литературе практически нет.

Полученные в работе данные свидетельствуют о том, что добавление сегнетоэлектрических наполнителей ведет к росту значений электретных характеристик полиэтилена, но только до определенной степени наполнения, после чего наблюдается их снижение (рис. 1).

Однако для некоторых полимерных композиций было выявлено, что при определенных температурах предварительного нагрева перед электретированием Тпол применение сегнетоэлектрика позволяет на порядок повысить значения электретных характеристик полимера (табл. 1). Данный эффект был связан с особенностями поведения сегнетоэлектриков в точке Кюри. Если перед электретированием сегнетоэлектрик находится в параэлектрической фазе, а полимер – в вязкотекучем состоянии, то процесс перехода наполнителя в сегнетоэлектрическую фазу осуществляется при охлаждении полимерной матрицы в короне. При этом полимер затвердевает и фиксирует, «замораживает» доменные кристаллы сегнетоэлектрика в ориентированном состоянии – наблюдается существенное повышение электретных характеристик композиций. Этот факт проявляется, в частности, для композиций ПЭВД с NaNO2 и с BaTiO3, которые имеют точку Кюри выше температуры плавления полиэтилена (165 и 133 °С соответственно).

Таблица 1. Электретные характеристики полиэтиленовых композиций

Композиция Тпол, °С Начальные значения Значения на 30-е сутки
Е, кВ/м |UЭРП|, кВ |эф|, мкКл/м2 Е, кВ/м |UЭРП|, кВ |эф|, мкКл/м2
ПЭВД 175 8,39 1,5 19,1 0,56 0,1 2,1
ПЭВД + 2 % NaNO2 11,85 2,4 40,0 9,88 1,7 28,4
ПЭВД + 4 % NaNO2 8,55 2,9 50,6 5,18 1,8 31,5
ПЭВД 145 8,31 1,6 26,2 0,81 0,2 4,3
ПЭВД + 2 % BaTiO3 12,15 3,3 59,6 8,08 2,0 36,1
ПЭВД + 4 % BaTiO3 11,85 3,9 74,6 3,73 1,5 28,7


Pages:   || 2 | 3 | 4 | 5 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.