авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 | 2 || 4 | 5 |   ...   | 6 |

Научные основы получения плотных, пористых заполнителей и бетонов различного функционального назначения из природного и техногенного сырья кольского полуострова

-- [ Страница 3 ] --

Для оценки воздействия факторов внешней среды, которые могут влиять на изменение свойств бетона на нефелинсодержащих заполнителях при его эксплуатации, проведены исследования стойкости таких бетонов в различных средах, характерных для условий подземных выработок рудников ОАО «Апатит». К таким условиям относятся: воздушно-сухие и воздушно-влажные, длительное воздействие водных сред с уровнем рН в пределах 5-10, попеременное насыщение водой и высыхание. Результаты годичных испытаний образцов бетонов, твердевших в различных условиях, показали, что в них отсутствуют деформации расширения, существенно не снизились регламентируемые показатели (масса, размеры, скорость прохождения ультразвука, прочности при сжатии и растяжении при изгибе) по сравнению с контрольными образцами, твердевшими в водопроводной воде.

Исследованием микроструктуры бетона установлено, что образцы, хранившиеся в водных средах, имеют несколько большую степень гидратации, чем образцы, находившиеся на воздухе. Структура бетона, хранившегося в жидкой среде с рН=10, отличается наличием более мелких кристаллов эттрингита. В то же время в порах в большом количестве присутствуют крупные агрегаты пластинчатых кристаллов гидроксида кальция, кристаллизация которого ускоряется из-за повышенной концентрации в растворе ионов гидроксила. В целом, полученные результаты годичных испытаний свидетельствуют о возможности использования нефелинсодержащих пород в качестве заполнителей бетонов, эксплуатирующихся в условиях подземных выработок на рудниках ОАО «Апатит». Это подтверждается сохранностью конструкций, изготовленных из бетона на нефелинсодержащих заполнителях из вмещающих пород, после многолетнего (не менее 20 лет) срока эксплуатации в подземных выработках при условии соблюдения требований к качеству исходной бетонной смеси и технологии ее укладки.

Установлено, что получаемые в результате переработки вскрышных нефелинсодержащих пород щебеночно-песчаные смеси или фракционированный щебень соответствуют требованиям, предъявляемым к материалам для дорожного строительства. Показано, что щебень из уртитов и рисчорритов может быть использован в качестве основного материала для строительства оснований дорожных одежд по способу заклинки, а щебеночно-песчаные смеси могут быть применены для устройства щебеночных оснований и для строительства щебеночных покрытий на дорогах IV-V технических категорий во всех дорожно-климатических зонах. На дробильно-сортировочной установке ОАО «Апатит» проведена промышленная проверка технологии переработки скальных вскрышных пород и установлена возможность получения фракционированного щебня и щебеночно-песчаных смесей, обладающих требуемыми техническими характеристиками. Для дорожного строительства произведено около 220 тыс. м3 дробленой породы из уртитов месторождения «Коашва» (Восточный рудник).

Исследования возможности использования нефелинсодержащих пород для получения асфальтобетонов показали, что они соответствуют требованиям ГОСТ 9128-97 на смеси асфальтобетонные дорожные, аэродромные и асфальтобетон. Установлено, что по показателям пластичности и условной жесткости они не уступают горячим асфальтобетонам с использованием традиционных каменных материалов для верхних слоев покрытий, обладают высокой износостойкостью и долговечностью.

Специальные исследования дорожных цементных бетонов, учитывающие возможность их эксплуатации в неблагоприятных условиях в растворах хлористых солей, моделирующих воздействие антигололедных реагентов, показали, что заполнитель из нефелинсодержащих пород позволяет получить при нормальном твердении бетон с маркой по морозостойкости F200, что соответствует проектным требованиям для бетона, эксплуатирующегося в районах со среднемесячной температурой наиболее холодного месяца ниже -15оС.

Выполнена технико-экономическая оценка эффективности использования вскрышных пород хибинских апатитонефелиновых месторождений и определено, что применение щебня из этих пород по сравнению с получением щебня из карьеров природного строительного камня позволит экономить не менее 150 руб. на 1 м3 заполнителя. Показано, что наращивание выпуска щебня целесообразно в первую очередь за счет развития имеющегося дробильно-сортировочного комплекса на Восточном руднике ОАО «Апатит», направляющего в отвал более 6 млн м3 вскрышных скальных пород ежегодно и где созданы предпосылки для производства до 10 млн м3 щебня.

Разработаны технические условия, обусловливающие возможность применения вскрышных скальных пород хибинских апатитонефелиновых месторождений в строительстве, перечень которых приведен на стр. 7 автореферата.

В главе 4 приведены результаты исследований вспучивающихся сланцев - перспективного сырья для получения пористых заполнителей и легких бетонов на их основе. Исследованиям подвергались сланцы, залежи которых были выявлены при проведении геолого-разведочных работ на территории Кольского региона: месторождения Вуручуайвенч (район г. Мончегорска) и проявлений Земляное, Кийский рейд и Цыпнаволок на полуостровах Средний и Рыбачий.

Исходя из минерального состава, сланцы в целом характеризуются как серицит-альбит-хлорит-кварцевые. В исследованных пробах содержание породообразующих минералов, мас.%: кварц – 25-50, хлорит – 11-40, альбит – 14-30, серицит – 5-15; содержание углеродистого материала не превышает 3% (преимущественно в пределах 1%). Структура сланцев алевропелитовая, пелитовая. Текстура преимущественно микрослоистая.

По химическому составу сланцы соответствуют основным требованиям, предъявляемым к глинистому сырью для получения пористых заполнителей: содержание SiO2 не превышает 60%, СаО менее 2%, MgO не более 4%, SO3 менее 1%, сумма оксидов K и Na в нормируемых пределах 1.5-6%, а Al и Ti – 10-25%. Значения Аэфф исследованных проб сланцев месторождения Вуручуайвенч составляют 100-120 Бк/кг, а проявлений сланцев на полуостровах Средний и Рыбачий 165-260 Бк/кг, т.е. сланцы могут быть использованы для производства строительных материалов без ограничений по радиационному фактору.

Установлены оптимальные температуры термоподготовки и обжига проб сланцев, находящиеся в пределах 300-400С и 1140-1170С соответственно. Исходя из классификации глинистого сырья по величине коэффициента вспучивания, большинство проб сланцев относится к группе средневспучивающихся пород, Квсп которых в зависимости от минерального состава находится в пределах 2.5-4.5. Установлено, что этим показателям соответствуют сланцы, содержание в которых хлорита, серицита и гидрослюд составляет 30-70%; уменьшение их количества ниже 30% и увеличение содержания кварца более 40% приводит к снижению Квсп. Изученные сланцы имеют достаточно широкий интервал вспучивания – 68-116С, что создает благоприятные условия при получении пористого заполнителя в промышленных условиях.

Рисунок 7 – Влияние температуры на процесс газовыделения сланцев

Изучен процесс газовыделения при температурной обработке сланцев с отбором газов при 30-минутной изотермической выдержке при различной температуре в интервале 200-1200С. На рис. 7 представлен график зависимости объема выделяющейся газовой фазы от температуры обжига технологической пробы фракции 5-10 мм сланцев месторождения Вуручуайвенч (мас.%: кварц – 39, хлорит – 26, альбит – 16, серицит – 12); температурный интервал вспучивания 90С. Установлено, что общий объем выделившихся газов составил 9070 см3/кг породы. При этом в области наиболее интенсивного вспучивания при температурах 1100 и 1200С объем газов составил 920 и 330 см3 соответственно, чего достаточно для вспучивания доведенной до пиропластического состояния массы.

В ОАО «Шунгизит» (г. Мурманск) проведены опытно-промышленные испытания по получению пористого заполнителя из валовой партии сланцев (70 м3) месторождения Вуручуайвенч, в результате которых получен заполнитель со средним Квсп=3.3 и насыпной плотностью 340, 480 и 590 кг/м3 для фракций 20-40, 10-20 и 5-10 мм соответственно.

На основе вспученных сланцев фракций 5-10 и 10-20 мм разработан легкий бетон марок 35-100 с плотностью 950-1150 кг/м3 и поризованный легкий бетон марок 35-75 пониженной плотности 850-960 кг/м3. С учетом результатов проведенных испытаний разработаны ТУ 571-003-04604169-95, предназначенные для получения легких бетонов и теплоизоляционных материалов.

Изучены сланцы перспективных проявлений – Земляного, Кийского Рейда и Цыпнаволока, прогнозные ресурсы которых составляют 80, 150 и 384 млн м3 соответственно. Сланцы этих проявлений обладают достаточно высокой степенью вспучиваемости, достигающей для отдельных проб 4.5 (в среднем по участку отбора технологической пробы сланцев на проявлении Цыпнаволок Квсп=4.1). На рис. 8 показано распределение пор в сланцах в зависимости от температуры обжига от 990 до 1160С, обеспечивающей наибольший Квсп.

Исследования аншлифов, выполненные на установке BидeoTecт, показали, что структура сланцев, обожженных при 990С, представлена в основном мелкими порами размером до 0.1 мм в количестве 54%, содержание пор 0.1-0.2 мм – 33%. Количество пор с максимальным размером 0.8 мм составляет менее 1%. Коэффициент вспучивания сланцев при этой температуре в среднем 1.3.

990С 1110С 1160С
  Распределение пор в-8

Рисунок 8 – Распределение пор в зависимости от температуры обжига сланцев

Повышение температуры выше 1000С приводит к появлению некоторого количества расплава за счет образования легкоплавких эвтектик, в состав которых входят оксид железа(II) и щелочные оксиды. Появляются замкнутые, вытянутые в одном направлении поры, окруженные со всех сторон стеклофазовой. Увеличение при температуре 1050-1100С преобладающего количества пор размером 0.2 мм (около 70%) приводит к повышению пористости зерен до 66% и Квсп до 2.5.

При повышении температуры до оптимальной - 1160С с увеличением содержания жидкой фазы происходит дальнейшее размягчение сланцев. В расплаве происходит растворение тонкодисперсных примесей слюд, кварца, полевого шпата, продуктов диссоциации карбонатов. Под действием выделяющихся газообразных продуктов развивается процесс вспучивания, приводящий к образованию поризованного продукта, содержащего около 80% стекломассы, в которой имеются кристаллические включения кварца, полевого шпата, шпинели. В результате интенсивного вспучивания происходит быстрый рост пор, общая пористость достигает 76%. Количество пор размером 0.5-1 мм снижается до 34%, содержание пор диаметром 2-3 мм повышается до 20%. На рис. 9 приведен характер изменения Квсп и плотности зерен сланцев (проба проявления Цыпнаволок) в результате обжига при различной температуре. Как видно из этих данных, при температуре 1160С Квсп достигает максимального значения 4.1, а средняя плотность зерен снижается до 0.59 г/см3. Размер отдельных крупных пор увеличивается до 4 мм (рис. 10).

  Зависимость Квсп (1) и-9

Рисунок 9 – Зависимость Квсп (1) и плотности зерен (2) сланцев от температуры обжига

Рисунок 10 – Структура сланца после обжига при температуре 1160С. Ув. 8

В табл. 1 приведены основные свойства пористого заполнителя из технологической пробы сланцев проявления Цыпнаволок, свидетельствующие о достаточно высоких физико-механических показателях заполнителя. Близкими характеристиками обладают пористые заполнители из сланцев Земляного и Кийского Рейда.

На основе вспученных сланцев получены легкие бетоны классов 3.5-12.5 и плотностью 880-1110 кг/м3, обладающие необходимыми эксплуатационными показателями. Микротвердость контактной зоны «вспученный сланец - цементный камень» в среднем на 20% выше, чем последнего за пределами этой зоны, что указывает на химическое взаимодействие минералов цемента с активными составляющими вспученных сланцев. Показано, что в этой контактной зоне содержание СаОсв меньше, чем в цементном камне; в 400-суточном возрасте содержание СаОсв составляет 6.82 и 8.34% соответственно.

Разработан композиционный пенообразователь для легкобетонных смесей на основе скрубберной пасты – отхода производства синтетических моющих средств, модифицированный добавками поверхностно-активного вещества Сампо и нитрата натрия при следующем соотношении компонентов, мас.%: 1-1.35, 1-1.25 и 1-2 соответственно. Пенообразователь повышает кратность пены на 10-30% и стойкость в цементном тесте в среднем на 23%. Выполнена опытно-промышленная проверка технологии получения стеновых панелей из золосодержащих легкобетонных смесей, пори-

Таблица 1 – Свойства пористого заполнителя из сланцев проявления Цыпнаволок

Показатель Фракция, мм
5-10 10-20 20-40
Истинная плотность, г/см3 2.51
Средняя плотность зерен, г/см3 0.76 0.69 0.59
Насыпная плотность, кг/м3 (марка) 400 (М400) 350 (М350) 310 (М350)
Пористость зерен, об.% 69.7 72.5 75
Коэффициент теплопроводности, Вт/(м·К) 0.120 0.111 0.098
Водопоглощение, мас.%: через 1 ч через 48 ч 13.0 14.7 10.3 11.9 6.8 9.2
Прочность при сдавливании в цилиндре, МПа (марка) 1.4 (П50) 1.2 (П50) 1.0 (П35)
Морозостойкость (потери после 15 циклов), мас.% 1.0 1.2 1.8
Потери массы при кипячении, мас.% 1.1 1.9 2.5
Стойкость против силикатного распада, мас.% 1.2 0.6 1.6
Стойкость против железистого распада, мас.% 0.5 0.6 1.2
Содержание SO3, мас.% 0.02
Потери при прокаливании, мас.% 0.1


Pages:     | 1 | 2 || 4 | 5 |   ...   | 6 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.