авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:   || 2 | 3 | 4 |

Научные основы современных технологий распыливания воды в системах вентиляции и кондиционирования воздуха

-- [ Страница 1 ] --

На правах рукописи

Сафиуллин Ринат Габдуллович

НАУЧНЫЕ ОСНОВЫ СОВРЕМЕННЫХ ТЕХНОЛОГИЙ

РАСПЫЛИВАНИЯ ВОДЫ В СИСТЕМАХ ВЕНТИЛЯЦИИ

И КОНДИЦИОНИРОВАНИЯ ВОЗДУХА

Специальность 05.23.03 – Теплоснабжение, вентиляция, кондиционирование воздуха, газоснабжение и освещение

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

доктора технических наук

Москва – 2010

Работа выполнена в Государственном образовательном учреждении высшего профессионального образования «Казанский государственный архитектурно-строительный университет»

Научный консультант: доктор технических наук, профессор

Посохин Владимир Николаевич

Официальные оппоненты: доктор технических наук, профессор

Прохоров Виталий Иванович

доктор технических наук, профессор

Полосин Иван Иванович

доктор технических наук, профессор

Бодров Валерий Иосифович

Ведущее предприятие: ОАО «Центральный научно-исследова-тельский и проектно-экспериментальный институт промышленных зданий и сооружений - ЦНИИПромзданий»

Защита состоится « » 2010 г. в на заседании диссертационного совета Д 212.138.10 при ГОУ ВПО Московском государственном строительном университете по адресу: Москва, Ярославское шоссе, 26, МГСУ, ауд. № _____.

С диссертацией можно ознакомиться в библиотеке ГОУ ВПО Московского государственного строительного университета.

Автореферат разослан «____ » __________ 2010 г.

Ученый секретарь

диссертационного совета Орлов В.А.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Актуальными задачами для отечественных предприятий, занимающихся выпуском и внедрением климатических систем, являются совершенствование существующей и разработка принципиально новой высокоэффективной техники для обработки воздуха, работа которой базируется на более полной реализации теоретических подходов, использованных при ее проектировании. Решение этих задач позволит создать конкурентоспособную продукцию на мировом рынке по себестоимости и качеству, отличающуюся высокой эффективностью и низким энергопотреблением.

Эффективность современных распылительных аппаратов систем вентиляции и кондиционирования, таких как градирни, камеры орошения, скрубберы и др. не достаточно высока. В первую очередь это связано с традиционным использованием в них гидравлических и пневматических форсунок, распыл которых крайне полидисперсен и неравномерен по сечению аппарата, что является следствием используемого механизма каплеобразования - спонтанного распада струй и пленок жидкости под действием нерегулярных возмущений. Полидисперсность распыла воды приводит к существенному отклонению реальных процессов обработки воздуха от теоретически возможных, так как капли разного размера при тепломассобмене ведут себя по-разному: крупные капли на всем протяжении контакта с воздухом только нагреваются, мелкие капли интенсивно испаряются в объеме аппарата.

Практика использования распылительных аппаратов систем вентиляции и кондиционирования воздуха показывает, что их эффективность не может быть повышена без перехода на новые, современные монодисперсные технологии распыливания воды с регулируемым качеством распыла, позволяющие добиться полной управляемости процессами тепловлажностной обработки воздуха.

Анализ проблемы показывает, что в системах вентиляции и кондиционирования будет эффективным использовать распылители с качественно иным, чем у форсунок, механизмом каплеобразования, при котором капли формируются на множестве одноразмерных каплеобразующих элементов в регулярном режиме. Например, статические перфорированные распылители, которые позволяют получать крупные одноразмерные капли диаметром 24 мм для проведения процессов испарительного охлаждения воздуха. Для тонкого распыления при увлажнении воздуха могут использоваться вращающиеся распылители – диски с зубчатой периферией, перфорированные или пористые оболочки с практически монодисперсным распылением воды на капли диаметром менее 1 мм.

С точки зрения простоты конструкции, высокого качества распыла, дешевизны и низких энергозатрат на распыливание наиболее предпочтительным для систем вентиляции и кондиционирования воздуха является применение пористых вращающихся распылителей (ПВР) на основе фильтрующей керамики, пористого стекла, металлокерамики или абразива. Изотропность структуры и однородность зернового состава пористого тела определяет практически монодисперсное каплеобразование при работе ПВР.

Регулирование тонкости распыла у ПВР достигается изменением скорости их вращения. Одноразмерные капли диаметром 5001000 мкм образуются в струйном режиме при скоростях вращения до 2 м/с. С увеличением скорости до 6-8 м/с капли в распыле уменьшаются в размере до 100200 мкм. При достижении скоростей вращения свыше 12-20 м/с наблюдается практически монодисперсное распыление воды - режим каплеобразования непосредственно на зернах внешней поверхности пористого тела распылителя. В этом режиме ПВР создают равномерный однородный факел распыла, в котором преобладают капли диаметром менее 50 мкм.

Применение технологии распыливания воды на основе ПВР и других распылителей с регулируемым качеством распыла открывает широкие возможности для создания высокоэффективных, малогабаритных, простых по конструкции, надежных в работе и удобных в ремонте тепломассообменных аппаратов. Однако распылители с каплеобразующими элементами в системах вентиляции и кондиционирования практически не используются. В первую очередь это связано с неясностью вопроса о механизме каплеобразования, о влиянии характеристик структуры материала, геометрии каплеобразующих элементов, расхода и скорости вращения на размеры образующихся капель, то есть - с отсутствием физико-математической модели монодисперсного каплеобразования в целом. Важность разработки научных основ такой модели для конструирования энергоэффективных контактных аппаратов на основе распылителей с каплеобразующими элементами определяет актуальность настоящей работы.

Остается малоизученным механизм образования капель-спутников, наличие которых в распыле ухудшает степень его дисперсности. Известные расчетные зависимости для размеров капель в распыле носят экспериментальный характер, имеют значительную погрешность и не позволяют правильно конструировать и применять распылители подобного класса в системах обработки воздуха.

Цель работы и задачи исследования. Цель заключается в разработке теоретических основ монодисперсных технологий распыливания воды, необходимых для квалифицированного проектирования и расчета воздушных и распылительных трактов современных высокоэффективных тепломассообменных аппаратов систем вентиляции и кондиционирования воздуха.

В соответствии с поставленной целью решались основные задачи исследования:

  • определить оптимальные размеры капель, необходимых для эффективного проведения процессов тепловлажностной обработки воздуха в системах вентиляции и кондиционирования воздуха;
  • изучить закономерности процесса каплеобразования на каплеобразующих элементах разной геометрии в поле силы тяжести; определить физический механизм отрыва капель и зависимость их размеров от формы каплеобразующих элементов и расхода жидкости; определить границу перехода от капельного истечения к струеобразованию;
  • разработать математическую модель монодисперсного каплеобразования на каплеобразующих элементах ПВР с учетом свойств структуры материала распылителя и динамики процесса в поле центробежной силы;
  • экспериментально определить граничные значения параметров работы ПВР, при которых реализуется монодисперсный распыл;
  • разработать методику инженерного расчета ПВР и рекомендации по проектированию аппаратов для систем вентиляции и кондиционирования воздуха на основе монодисперсных технологий распыливания воды;
  • разработать математическую модель для определения полей скорости течения и очертаний отрывных зон на входе воздуха в раструбные участки распылительных аппаратов;
  • определить параметры вихревых зон на входах в распылительные аппараты с раструбами различной геометрии;
  • провести практическую апробацию результатов исследования.

Научная новизна:

  • впервые разработана математическая модель монодисперсного каплеобразования, позволяющая определять размеры капель в зависимости от геометрических, структурных и режимных параметров пористых распылителей и устройств с каплеобразующими элементами;
  • впервые исследованы закономерности монодисперсного каплеобразования при формировании капель на статических каплеобразующих элементах и при распыливании воды пористыми вращающимися распылителями (ПВР); установлены критерии, характеризующие динамику каплеобразования и определяющие размеры капель в распыле ПВР; определены критические значения критериев, в пределах которых достигается режим монодисперсного распыления;
  • впервые разработана научно обоснованная и экспериментально проверенная методика расчета устройств с монодисперсным распыливанием воды для систем обработки вентиляционного воздуха, а также методика расчета распылительных систем доувлажнения воздуха непосредственно в помещении с учетом времени полного испарения капель;
  • впервые разработана математическая модель для расчета течений и формы вихревых зон вблизи всасывающих отверстий в виде раструбов, используемых в аппаратах систем вентиляции и кондиционирования воздуха;
  • впервые определены основные ха­рактерные параметры вихревых зон на входах в раструбы с различной геометрией, разработаны рекомендации по профилированию входных участков распылительных аппаратов с целью снижения их энергоемкости и уменьшения шума, создаваемого ими;
  • разработаны энергоэффективные конструкции аппаратов для обработки вентиляционного воздуха на основе монодисперсной технологии распыливания воды.

На защиту выносятся:

  • выявленные закономерности формирования и отрыва капель от каплеобразующих элементов цилиндрической, конической и сферической форм поверхности; границы перехода от каплеобразования к струйному истечению в поле силы тяжести;
  • полученные экспериментально и численным расчетом зависимости отрывных объемов капель от геометрии каплеобразующих элементов, расхода и свойств жидкости в поле силы тяжести;
  • разработанная динамическая модель процесса каплеобразования на зернах ПВР в поле центробежной силы, позволяющая выполнить расчет объемов образующихся капель в зависимости от свойств жидкости, структурных, геометрических и режимных характеристик вращающегося распылителя;
  • полученные значения критериев, определяющих динамику каплеобразования на зернах ПВР, а также результаты расчета отрывных объемов капель, образующихся в монодисперсном режиме работы ПВР;
  • полученная зависимость для среднего диаметра капель от скорости вращения и размера зерен ПВР в режиме монодисперсного распыления;
  • результаты экспериментальных исследований по определению дисперсных характеристик образцов ПВР для тонкого распыления на основе абразивных микропорошков и пористых волокнистых оболочек;
  • конструкции распылителей с нитями для регулируемого монодисперсного распыливания загрязненных и вязких жидкостей; конструкции ПВР для работы с загрязненными жидкостями;
  • инженерный метод расчета параметров ПВР для промышленных аппаратов систем вентиляции и кондиционирования воздуха;
  • математическая модель для расчета течений и формы вихревых зон вблизи всасывающих отверстий аппаратов с раструбами;
  • результаты расчета характерных размеров вихревых зон в зависимости от длины раструба и угла его раскрытия;
  • конструкции распылительных аппаратов на основе ПВР для тепловлажностной обработки вентиляционного воздуха;

Достоверность результатов работы. Математические модели разрабатывались на основе классических методов механики сплошных сред. Представленные в диссертации результаты теоретических исследований подтверждаются результатами экспериментальных исследований автора. Экспериментальные данные получены с использованием апробированных методов и методик измерений, и не противоречат известным результатам.

Практическая значимость результатов работы определяется решением в рамках диссертации крупной проблемы – научное обоснование способов снижения энергоемкости тепломассообменных аппаратов систем вентиляции и кондиционирования воздуха, а также разработка эффективных распылителей для проведения широкого ряда технологических процессов, требующих создания высокоразвитой поверхности взаимодействия фаз при равномерно распределенном в пространстве и монодисперсном по составу факеле распыла.

Практическую ценность имеют:

  • программа по расчету объемов капель, образующихся в режиме монодисперсного распыления при каплеобразовании в центробежном поле;
  • методика расчета характеристик вращающихся распылителей с требуемым качеством распыла для эффективных аппаратов тепловлажностной обработки воздуха;
  • способ определения поверхностного натяжения жидкостей, полученный на основе изучения закономерностей каплеобразования на конических элементах в поле силы тяжести.
  • конструкции механических распылителей с гибкими нитями, обладающие регулируемым качеством распыла в широком диапазоне производительности для распылительных аппаратов систем вентиляции и кондиционирования воздуха;
  • конструкции распылителей для работы с жидкостями, загрязненными механическими примесями;
  • конструкции увлажнителей воздуха бытового и промышленного назначения на основе вращающихся распылителей с тонким монодисперсным распылением воды.

Результаты исследований закономерностей монодисперсного каплеобразования и отдельные конструкции энергоэффективных аппаратов для обработки воздуха внедрены в системах вентиляции и кондиционирования на действующих предпри­ятиях МУП ПО «Казэнерго» г. Казань, ООО «Елабужское предприятие те­пловых сетей» г. Елабуга, ОАО «Зеленодольское ПТС» г. Зеленодольск Республики Татарстан, ЗАОр (НП) «Поволжский фанерно-мебельный ком­бинат». Экономический эффект по каждой проведенной модернизации составляет более 100 тыс. рублей в год и подтвержден актами внедрения.

Рекомендации по расчету вращающихся монодисперсных распылителей с каплеобразующими элементами, а также по конструированию распылительных аппаратов на основе ПВР использованы институтом ГУП «Татинвестгражданпроект» при разработке проектов систем для поддержания оптимальных параметров микроклимата в помещениях общественных зданий.

Апробация работы. Основные положения и результаты диссертационной работы докладывались и публиковались в сборниках трудов на Международных и Всероссийских научно-технических конференциях, посвященных теоретическим основам теплогазоснабжения и промышленной вентиляции, качеству внутреннего воздуха и окружающей среды, проходивших в городах России (Казань 1997, 2009, 2010 гг.; Волгоград 2002, 2003, 2004, 2006, 2010 гг.; Ижевск 2002, 2003 гг.; Москва 2000, 2005, 2009 гг.), а также за рубежом (Швейцария, Цюрих, 2003 г.).

Личное участие. Все основные результаты работы получены лично автором. Использованные материалы других исследователей помечены ссылками на литературный источник.

Публикации. По теме диссертации опубликовано 38 научных работ, в том числе монография и 14 статей в журналах по списку ВАК. Получено 3 патента на изобретения.

Структура и объем работы. Диссертационная работа изложена на 295 страницах и состоит из введения, шести глав, основных выводов, списка литературы и приложений. Список использованной литературы включает 227 наименований работ отечественных и зарубежных авторов. Иллюстрационный материал содержит 43 рисунка, 8 таблиц в тексте.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обосновывается актуальность проведения исследований по теме диссертационной работы, сформулирована цель и дана общая характеристика работы.

В первой главе представлен аналитический обзор работ, посвященных основным закономерностям тепломассообмена между каплями жидкости (воды) и газом (воздухом), а также вопросам испарения капель воды в воздушном потоке. Цель обзора – выявление необходимых размеров капель для различных процессов обработки воздуха, включая доувлажнение воздуха в помещениях, а также очистку отходящих дымовых и агрессивных газов.

Показано, что для осушки с охлаждением воздуха белее предпочтительны капли диаметром 5001000 мкм, для его увлажнения – 1530 мкм, для очистки дымовых газов от мелкодисперсных аэрозолей – 50100 мкм. При этом состав капель в объеме аппаратов должен быть максимально однородным по размерам (монодисперсным) и равномерным по сечению контактной зоны. Данные о предпочтительных диаметрах капель и о фактической дисперсности распылов определяют современный инженерный подход при выборе типа распыливающего устройства и конструкции контактных аппаратов для эффективного проведения указанных процессов.

Приводится анализ литературных и патентных источников, касающийся перспектив использования в системах вентиляции и кондиционирования воздуха известных конструкций распылителей (вибрационных, акустических и ультразвуковых устройств, вращающихся дисков и перфорированных распылителей), способных создавать объемный равномерный факел распыла монодисперсной структуры. Анализ выполнен на основе рассмотрения особенностей механизма каплеобразования и затрат энергии на осуществление способа распыливания.

Наиболее перспективным (с точки зрения тонкости и монодисперсности распыла, большой производительности и минимальных энергозатрат) является способ распыливания статическими и вращающимися распылителями, у которых формирование капель осуществляется на множестве каплеобразующих элементов, объединенных в развитую распыливающую поверхность. Такой способ реализуется, в частности, пористыми вращающимися распылителями (ПВР) в режиме, именуемом «каплеобразование на зерне».

Наступление режима каплеобразования на зерне ПВР определяется строгим соотношением между расходом жидкости и скоростью вращения распылителя, геометрией зерен и пор, а также структурными и геометрическими характеристиками материала пористой оболочки. При этом распределение капель по размерам в факеле распыла соответствует распределению по размерам зерен на распыливающей поверхности ПВР. Стабильное формирование капель на одноразмерных зернах поверхности ПВР и определяет практически монодисперсный состав капель в факеле в капельном режиме работы распылителя.



Pages:   || 2 | 3 | 4 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.