Динамика вязких циркуляционных течений в трубах и поверхностных воронках
а также распределения радиальных и вертикальных скоростей
, (44)
, (45)
где ,
- функции Бесселя первого рода нулевого и первого порядка,
- константа разделения, равная одному из действительных корней функции
,
- ордината свободной поверхности вихревой воронки.
Распределения (42)-(45) позволяют построить гидродинамическую сетку течения в вихревой воронке и векторы скоростей, показанные на рис.11. Свободная поверхность на рисунке выделена утолщенной сплошной линией.
Рис.11. Гидродинамическая сетка течения и векторы скоростей
Азимутальная компонента скорости () находится из квазилинейного дифференциального уравнения (41’), решение которого для турбулентного течения получено как функция от потенциала скорости
. (46)
Можно видеть, что в поверхностной воронке распределение окружных скоростей подчиняется экспоненциальному закону. Это характерно для любых вязких циркуляционных течений и соответствует «свободно-вынужденному вихрю Бюргерса», когда вблизи оси () жидкость вращается как «твердое тело», а на периферии распределение тангенциальных скоростей соответствует «свободному вихрю». При этом вязкое циркуляционное течение в поверхностной вихревой воронке не является ни потенциальным, ибо
, ни винтовым, т.к.
.
Для поверхностных слоев вихревой воронки (при ) функцию (46) можно свести к формуле
, (46’)
полученной проф. Г.А. Эйнштейном (Университет Беркли, США, Калифорния, 1955). В силу простоты, но достаточной корректности формула (46’) использована при выводе функций: радиального профиля свободной поверхности вихревой воронки (кривой вихревого мениска)
(47)
и глубины воронки на оси ее вращения ()
. (47’)
Вывод формул (47)-(47’) основан на решении уравнения (39) для свободной поверхности вихревой воронки, где избыточное давление равно нулю (), и из предположения, что силами поверхностного натяжения и радиальным градиентом пульсационной скорости можно пренебречь.
Таким образом, профиль свободной поверхности вихревой воронки и ее глубина
на оси вращения определяются: интенсивностью нормированной циркуляции
и комбинацией чисел Рейнольдса
и Фруда
. Для замыкания расчетных уравнений значение турбулентной вязкости
в турбулентном числе Рейнольдса принято по работам Национального управления по аэрокосмическим исследованиям Франции (ONERA) J.M. Delery и F.L. Fernandes, S.C. Lubard
. (48)
Поскольку расчетные турбулентные числа Рейнольдса достаточно высоки, то (47’) можно существенно упростить, исключив из него малые высоких порядков, и далее установить, что критерий, определяемый неравенством
, (49)
при выполнении которого предотвращается прорыв поверхностной вихревой воронки в напорный водовод, можно представить в виде
, (49’)
где - скорость потока в водоприемном отверстии радиусом
.
В завершении главы выполнена верификация математической модели циркуляционного течения в поверхностной вихревой воронке и условий ее прорыва в напорный водовод, показавшая, что расчеты хорошо соответствуют эмпирическим данным.
Экспериментальные исследования и последующая верификация математической модели выявили существенный масштабный эффект при физическом моделировании вихревых воронок, что является известным фактом, но количественные оценки в предшествующих работах значительно разнятся. Установлено, что при физическом моделировании по определяющему критерию Фруда глубину воронки, полученную на модели, необходимо пересчитывать на натуру с масштабным коэффициентом , где
- линейный масштаб модели, или для получения глубины воронки на модели, соответствующей линейному масштабному пересчету на натуру, идти на форсирование скорости в
раз по отношению к ее значению по правилу Фруда.
В приложении дан аналитический обзор работ по прикладной механике циркуляционных течений, обсуждается современное состояние проблемы.
ОСНОВНЫЕ ВЫВОДЫ
- Обзор современного состояния гидравлики циркуляционных течений позволяет сделать вывод, что любое вязкое циркуляционное течение является комбинацией «свободного» (потенциального) и «вынужденного» (твердого) вихрей. Причем трансформация циркуляционно-продольного течения за локальным завихрителем по длине цилиндрической трубы происходит путем перераспределения его потенциальной и вихревой составляющих в пользу последней, в результате чего закрученный на входе в трубу поток по мере продвижения по аксиальной координате приобретает квазитвердое вращение, характеризующее стадию вырождения циркуляции.
- Наиболее перспективное направление математического моделирования гидродинамики турбулентных циркуляционных течений сформировалось в рамках теории переноса завихренности Тейлора; это определяется тем, что уравнения Тейлора соответствуют специфике пространственных циркуляционных течений, где завихренность является их важнейшей характеристикой, прямо связанной с циркуляций
,
.
- Разработанная в диссертации на основе модели Тейлора математическая модель установившегося циркуляционно-продольного течения в цилиндрической трубе за локальным завихрителем, включающая компоненты молекулярных и турбулентных напряжений, позволяет получить аналитические решения, описывающие радиально-аксиальное распределение структурных характеристик течения, а также проследить динамику их изменения в зависимости от начальной циркуляции и числа Рейнольдса.
- В дифференциальных уравнениях динамики турбулентной среды в рамках теории Тейлора можно выделить слагаемые, содержащие эффективную вязкость как сумму молекулярной и турбулентной (
), и слагаемые, содержащие только турбулентную вязкость (
); первые позволяют рассматривать турбулентное течение как движение эффективно вязкой жидкости, вторые - отражают турбулентный перенос (диффузию), в связи с чем они названы диффузионными. При этом структурные характеристики турбулентного циркуляционно-продольного течения в цилиндрической трубе в основном определяются тензором напряжений с виртуальной вязкостью радиального направления
, то есть радиальными пульсациями скоростей.
- Циркуляционно-продольный поток по длине трубы в силу диссипации механической энергии за счет вязкого трения и турбулентной диффузии формируется в течение со сложным «свободно-вынужденным вращением», описываемым разложением Фурье-Бесселя при ламинарном течении или законом, близким к «вихрю Бюргерса» - при турбулентном, при этом аксиальное падение азимутальных скоростей определяется экспоненциальной функцией. Придание продольно-осевому течению закрутки приводит к фундаментальной трансформации радиально-аксиального распределения продольных скоростей в нем; таким образом, продольная составляющая в циркуляционно-продольном течении приобретает свойства зависимого от распределения азимутальных скоростей вторичного течения. Радиальные профили осевых скоростей и их трансформации по длине трубы описываются произведениями рядов Фурье-Бесселя для ламинарного течения и интегральными показательными функциями для турбулентного потока.
- Для циркуляционно-продольных течений сплошной среды характерно наличие возвратных токов в центральной приосевой зоне на участке, примыкающем к началу трубы, при этом возвратное приосевое течение формирует вокруг себя рециркуляционную зону; в потоках с вихревым жгутом область с возвратным течением и рециркуляционная зона отсутствуют. Для сплошных течений также характерно резкое нарастание положительных осевых скоростей в кольцевой зоне, непосредственно охватывающей область обратных токов, здесь имеет место поддерживающий баланс масс скачок осевых скоростей, не успевающий распространиться на более далекие от области возвратного течения периферийные слои; явление можно характеризовать как инициированную возвратным приосевым течением инерционную волну, концентрично расходящуюся от оси к стенкам водовода и затухающую по их достижении.
- Анализ вихревой структуры вязкого циркуляционно-продольного течения в цилиндрической трубе позволяет сделать вывод, что поток во всей области движения является вихревым и, таким образом, не является потенциальным, не является он и винтовым, ибо не соответствует условию
. Завихренность, генерируемая в приосевой зоне и имеющая на входе в проточный канал максимальное значение, распространяется с продвижением потока по аксиальной координате на все более обширную область, но подавляется, и периферийных слоев ближе к стенкам трубы или слоев на значительном удалении от входа достигает значительно ослабленной; генерирование вихрей в ламинарном течении происходит также вблизи твердых поверхностей, однако пристенные вихри на порядок менее значимы, чем внутренние.
- Установлено, что концентрация значительных касательных и нормальных напряжений в циркуляционно-продольном течении имеет место на начальном участке трубы в приосевой зоне потока, здесь наблюдаются максимальные радиальные и аксиальные градиенты всех компонент скорости, здесь поток теряет наиболее существенную часть своей энергии.
- На основе метода Рэлея и теории переноса звихренности Тейлора получен критерий локальной устойчивости циркуляционно-продольного течения к случайным возмущениям (критерий Рэлея), согласно которому устойчивость течения в его произвольной локальной области определяется знаком частной производной по радиусу произведения циркуляции на аксиальную компоненту вихря (
): при положительном значении критерия центробежные силы стремятся подавить случайные возмущения, и циркуляционное течение в исследуемой области будет устойчивым, при отрицательном знаке - случайные возмущения нарастают и течение теряет устойчивость. Критерий Рэлея позволяет выделить в циркуляционно-продольном течении зоны генерации случайных возмущений и зоны их подавления; критическое значение числа Рэлея при ламинарно-турбулентном переходе соответствует