Эффективные цементные штукатурные растворы с полыми стеклянными микросферами
Благодаря математическому планированию и обработки результатов эксперимента, получены математические модели свойств штукатурного раствора. Уравнения регрессии позволили выявить закономерности влияния расхода полых микросфер и суперпластификатора С-3. Доказано, что существенное влияние на свойства оказывают расходы ПСМС и СП. Было выяснено, что с увеличением расходов наполнителя повышается В/Ц раствора, влажность и водопоглощение камня, снижаются средняя плотность раствора и камня в естественном и высушенном состоянии, а также прочностные показатели. Оптимальным расходом суперпластификатора С-3 является 1 % от массы портландцемента. Удалось оптимизировать составы штукатурных растворов с расходом полых стеклянных микросфер от 10 до 50 % от массы ПЦ.
Уравнения имеют вид:
Для водоцементного отношения: В/Ц = 0,387 + 0,22 Х1 - 0,366 Х2 + 0,346 Х22
Для средней плотности раствора: р = 1,129 – 0,329 Х1 – 0,234 Х2 + 0,296 Х22
Для прочности при изгибе, МПа: Rизг. = 4,93 – 0,164 Х1 - 0,046 Х2 + 0,576 Х22
Для прочности при сжатии, МПа: Rсж. =18,475 -0,737Х1 -2,342Х2 +4,642Х22-0,04Х1Х2
Для влажности, %: wвл. = 18,35 + 1,17 Х1 - 14,99 Х2 + 6,9 Х22 - 0,163 Х1 Х2
Для водопоглощения, %: W =25,26 + 1,05 Х1 - 19,82 Х2 + 12,8 Х22 - 0,113 Х1 Х2
Для средней плотности камня в высушенном состоянии, г/см3:
к. сух. = 0,972 – 0,602 Х1 + 0,083 Х2 + 0,035 Х22
Для плотности камня в естественном состоянии, в возрасте 28 сут. г/см3:
ест. = 0,84 – 0,27 Х1 + 0,434 Х2 - 0,363 Х22
Причем, средняя ошибка аппроксимации была от 2 до 5 %.
Большой диапазон подвижностей и составов цементных штукатурных растворов с ПСМС позволяют выбирать раствор с заданными параметрами исходя из условий применения: для оштукатуривания внутренней или (и) наружной поверхности ограждающей конструкции. Разработанные строительные растворы могут применяться для оштукатуривания стен с целью регулирования термического сопротивления конструкции, паропроницаемости, влажностных и усадочных деформаций, используя различные составы.
Были определены реологические свойства строительных растворов с ПСМС и СП различных подвижностей. Произведено сравнение с кладочным раствором подвижностью 8...10 см. Выяснено, что при одинаковой подвижности раствора прослеживается определенная зависимость: чем ниже процент содержания наполнителя в цементной системе, тем быстрее раствор набирает пластическую прочность и происходит увеличение значений напряжения сдвига. Выяснено, что с ростом количества микросфер для всех видов растворов, сроки схватывания увеличиваются. Это связано с повышением воды затворения. Установлено, что более высокой подвижности раствора соответствует более высокие сроки начала и конца схватывания, что позволяют раствору дольше сохранять рабочее состояние. Произведено сопоставление сроков схватывания и значений пластической прочности, напряжений сдвига во времени (рис. 1-4).
Были определены значения пластической прочности, напряжения сдвига у составов с полыми стеклянными микросферами при разных ПК.
Погружение конуса 4…8 см:
Предельные значения пластической прочности были:
(ПЦ+10 % ПСМС+С-3) - 120. 10-3 МПа в 360 мин.;
(ПЦ+30 % ПСМС+С-3) - 76. 10-3 МПа в 360 мин.;
(ПЦ+50 % ПСМС+С-3) - 42. 10-3 МПа в 360 мин.
Предельные значения напряжения сдвига были:
(ПЦ+10 % ПСМС+С-3) - 32. 10-3 МПа в 360 мин.;
(ПЦ+30 % ПСМС+С-3) - 22. 10-3 МПа в 360 мин.;
(ПЦ+50 % ПСМС+С-3) - 16. 10-3 МПа в 360 мин.
Погружение конуса 8…10 см:
Предельные значения пластической прочности были:
(ПЦ+10 % ПСМС+С-3) - 104. 10-3 МПа в 390 мин.;
(ПЦ+30 % ПСМС+С-3) - 52. 10-3 МПа в 390 мин.;
(ПЦ+50 % ПСМС+С-3) - 32. 10-3 МПа в 390 мин.
Предельные значения напряжения сдвига были:
(ПЦ+10 % ПСМС+С-3) - 25. 10-3 МПа в 390 мин.;
(ПЦ+30 % ПСМС+С-3) - 22. 10-3 МПа в 390 мин.;
(ПЦ+50 % ПСМС+С-3) - 16. 10-3 МПа в 390 мин.
Погружение конуса 10…14 см:
Предельные значения пластической прочности были:
(ПЦ+10 % ПСМС+С-3) - 88. 10-3 МПа в 420 мин.;
(ПЦ+30 % ПСМС+С-3) - 51. 10-3 МПа в 420 мин.;
(ПЦ+50 % ПСМС+С-3) - 32. 10-3 МПа в 420 мин.
Предельные значения напряжения сдвига были:
(ПЦ+10 % ПСМС+С-3) - 20. 10-3 МПа в 420 мин.;
(ПЦ+30 % ПСМС+С-3) - 16. 10-3 МПа в 420 мин.;
(ПЦ+50 % ПСМС+С-3) - 13. 10-3 МПа в 420 мин.
Рис. 1. Пластическая прочность составов: ПЦ+10 % ПСМС+С-3;
ПЦ + 30 % ПСМС + С-3; ПЦ+50 % ПСМС+ С-3. Погружение конуса 4...8 см.
Рис. 2. Напряжение сдвига составов: ПЦ+10 % ПСМС+С-3;
ПЦ+30 % ПСМС+С-3; ПЦ+50 % ПСМС+С-3. Погружение конуса 4…8 см.
Рис. 3. Пластическая прочность составов: ПЦ+10 % ПСМС+С-3; ПЦ + 30 % ПСМС + С-3; ПЦ+50 % ПСМС+ С-3. Погружение конуса 10...14 см.
Рис. 4. Напряжение сдвига составов: ПЦ+10 % ПСМС+С-3; ПЦ+30 % ПСМС+С-3; ПЦ+50 % ПСМС+С-3. Погружение конуса 10…14 см.
Была определена сорбционная влажность затвердевшего цементного штукатурного раствора с полыми стеклянными микросферами, анализ которой позволил судить о поровой структуре камня с ПСМС. Количественно оценена гелевая, капиллярная, воздушная пористость цементной матрицы в зависимости от состава и погружения конуса. Самая высокая гелевая пористость, самые низкие капиллярная и воздушная пористость определены у камня при погружении конуса 4…8 см. С увеличением погружения конуса и при повышении расхода микросфер гелевая пористость снижается, а капиллярная и воздушная - возрастает. Причем, гелевая пористость максимальна при расходе ПСМС 10 % от массы ПЦ и равна 94 % от всей пористости цементной матрицы. Установлено, что самая низкая гелевая пористость при расходе микросфер 50 % и погружении конуса 10…14 см. Это связано, видимо, с количеством воды затворения. Все механические свойства у затвердевшего раствора с ПК = 4…8 см выше, чем у остальных растворов с ПСМС. Данные исследований после компьютерной обработки позволили получить графики дифференциального и интегрального распределения пор по диаметрам при P/Ps>0,97…0,98 или 97...98 % относительной влажности. Результаты приведены на рис. 5, 6, 7, 8 и в табл. 8, 9, 10.
Рис. 5. Дифференциальное и интегральное распределение пор по диаметрам цементной матрицы с 10 % ПСМС и СП С-3 в зависимости от относительной влажности водяного пара (воздуха). Погружение конуса 10…14 см.
Была определена общая пористость затвердевшего раствора (с учетом внутреннего объема полых стеклянных микросфер). Она повышается по мере роста ПК и расхода ПСМС. Самая низкая общая пористость наблюдалась у состава с 10 % микросфер и 1 % СП при ПК = 4…8 см. Она составляет 28,5 % при пористости матрицы 9,6 %. Самая большая общая пористость у состава с 50 % ПСМС и 1 % СП (ПК = 10…14 см). Она равна 88,1 % при пористости матрицы – 46 %.
Рис. 8. Дифференциальное и интегральное распределение пор по диаметрам цементной матрицы с 50 % ПСМС и СП С-3 в зависимости от относительной влажности водяного пара (воздуха). Погружение конуса 10…14 см.
Рис. 6. Дифференциальное и интегральное распределение пор по диаметрам цементной матрицы с 10 % ПСМС и СП С-3 в зависимости от относительной влажности водяного пара (воздуха). Погружение конуса 4…8 см.
Определено, что самую низкую общую пористость имеет состав с 10 % микросфер, а самую высокую – с 50 % ПСМС. Общая пористость у последнего состава достигает 88,1 %, что с учетом прочностных данных говорит о высокой эффективности таких растворов. Причем, пористость матрицы составляет от 1/3 до половины общей пористости у растворов с 10 % и 50 % полых стеклянных микросфер соответственно.
Рис. 7. Дифференциальное и интегральное распределение пор по диаметрам цементной матрицы с 50 % ПСМС и СП С-3 в зависимости от относительной влажности водяного пара (воздуха). Погружение конуса 4…8 см.
Были определены коэффициенты паропроницаемости и сопротивление паропроницанию штукатурных растворов с ПСМС и СП с разной подвижностью. Результаты приведены в табл. 10.
Таблица 8
Пористость цементной матрицы с микросферами при различном ПК
Состав, мас. % | Пористость затвердевшего раствора, %, при погружении конуса | ||||||||
4 … 8 см | 8 … 10 см | 10 … 14 см | |||||||
гелевая | капил-лярная | воздушная | гелевая | капил-лярная | воздушная | гелевая | капил-лярная | воздушная | |
100 Ц; 10 ПСМС; 1 СП | 94 | 5,2 | 0,8 | 90 | 9 | 1 | 78,1 | 19,9 | 2 |
100 Ц; 30 ПСМС; 1 СП | 87,4 | 10,6 | 2 | 76,4 | 21,2 | 2,4 | 68,9 | 28 | 3,1 |
100Ц; 50 ПСМС; 1 СП | 80,6 | 15,3 | 4,1 | 70 | 25 | 5 | 62 | 31 | 7 |
Установлено, что коэффициент паропроницаемости снижается по мере уменьшения подвижности раствора с 10…14 см до 4…8 см. Это снижение составляет 38…38,2 %. Рост сопротивления паропроницанию в этих условия находится в пределах от 20,1 до 28,2 %. Следовательно, при таком паропроницании потери тепла через наружные стены и усадка при высыхании будут существенно ниже.
Таблица 9
Общая пористость цементного камня с ПСМС при различном ПК
Состав, мас. % | Пористость затвердевшего раствора, %, при погружении конуса | ||||||||
4 … 8 см | 8 … 10 см | 10 … 14 см | |||||||
матрицы | ПСМС | общая | матрицы | ПСМС | общая | матрицы | ПСМС | общая | |
100 Ц; 10 ПСМС; 1 СП | 9,6 | 18,9 | 28,5 | 11 | 21,8 | 32,8 | 12,6 | 25,1 | 37,7 |
100 Ц; 30 ПСМС; 1 СП | 25,5 | 27,2 | 52,7 | 29 | 31,8 | 60,8 | 33,3 | 36,5 | 69,8 |
100Ц; 50 ПСМС; 1 СП | 36,5 | 31,8 | 67,3 | 42 | 36,3 | 78,3 | 46 | 42,1 | 88,1 |
Таблица 10
Коэффициент паропроницания строительного раствора с ПСМС и СП
Состав, мас. % | Погружение конуса | |||||
4...8 см | 8...10 см | 10...14 см | ||||
Коэффициент паропроницания, мг/м.ч.Па | Сопротивление паропроницанию, м2.ч.Па/мг | Коэффициент паропроницания, мг/м.ч.Па | Сопротивление паропроницанию, м2.ч.Па/мг | Коэффициент паропроницания, мг/м.ч.Па | Сопротивление паропроницанию, м2.ч.Па/мг | |
100 Ц; 10 ПСМС;1 СП | 0,0063 | 1,196 | 0,0076 | 1,015 | 0,0087 | 0,915 |
100 Ц; 30 ПСМС;1 СП | 0,0254 | 0,35 | 0,0305 | 0,328 | 0,0351 | 0,273 |
100Ц; 50 ПСМС;1 СП | 0,0415 | 0,231 | 0,0498 | 0,2 | 0,0573 | 0,187 |
Была выполнена проверка влагоудаления из конструкции стен – условие влагоудаления выполнялось. Выбор состава и подвижности растворов с ПСМС зависел от назначения помещения и его влажностного режима для обеспечения нормального паропереноса и удаления влаги из стены. На основании научных исследований были разработаны технические условия «ТУ 4140-073-02066525-2005. Штукатурный раствор с полыми стеклянными микросферами» и «Технологический регламент на приготовление и применение штукатурного раствора с полыми стеклянными микросферами», Москва, 2005 г. Экономический эффект от внедрения штукатурного раствора с полыми стеклянными микросферами составил 76 тысяч 779 рублей.
ОБЩИЕ ВЫВОДЫ
- Обосновано получение облегченных низкотеплопроводных цементных штукатурных растворов для ограждающих конструкций путем применения в качестве заполнителя полых стеклянных микросфер и суперпластификатора, улучшающих пластическо-вязкие свойства раствора, снижающих общую пористость и средний диаметр пор, а также формирующих более качественную контактную зону между цементной матрицей и микросферами за счет образования низкоосновных гидросиликатов кальция.
- Получены и оптимизированы составы эффективных цементных штукатурных растворов с полыми стеклянными микросферами, отличающиеся пониженной плотностью (до 0,8 г/см3), водопотребностью и повышенным сопротивлением паропроницанию по сравнению с традиционными штукатурными растворами. Разработанные растворы могут применяться для оштукатуривания стен с целью регулирования термического сопротивления конструкции, паропроницаемости, влажностных и усадочных деформаций, используя различные составы. Это позволяет выбирать раствор с заданными параметрами исходя из условий применения.
- На основании научных исследований были разработаны и введены в действие: «Технологический регламент на приготовление и применение штукатурного раствора с полыми стеклянными микросферами», Москва, 2005 г., «Штукатурный раствор с полыми стеклянными микросферами», «ТУ 4140-073-02066525-2005, Технические условия», Москва, 2005 г.
- Установлены графо-аналитические зависимости реологических свойств. Растворы с ПСМС имеют стабильную структуру в течение 4 часов после перемешивания. Произведено сравнение однородности строительных растворов с различной подвижностью, которая оценивалась по погружению конуса: 4...8 см; 8...10 см; 10...14 см. С увеличением расхода микросфер от 10 до 50 % плотность раствора по высоте образца увеличивается с 0,5 % до 4,4 % соответственно. Растворы с суперпластификатором увеличивают среднюю плотность по высоте образца в среднем на 2,9 %. При снижении ПК раствора с 10…14 см до 4…8 см, раствор становился более стабильным за счет снижения концентрации воды. Менее подвижные растворы обладают повышенной стабильностью.
- Установлено, что паропроницаемость у растворов с ПСМС и СП снижается на 38…38,2 % при уменьшении подвижности раствора с 10…14 до 4… 8 см, а рост сопротивления паропроницанию находится в пределах 20,1 до 28,2 %.
- Подтверждено экспериментально, что с увеличением расходов ПСМС повышается В/Ц, влажность и водопоглощение затвердевшего раствора, снижаются средняя плотность раствора и затвердевшего камня в естественном и высушенном состоянии, а также прочностные показатели. Оптимальным расходом СП С-3 является 1 % от массы портландцемента. Оптимизированы составы цементных штукатурных растворов с ПСМС.
- Получены математические модели свойств штукатурного раствора и камня – уравнения регрессии физико-механических и реологических свойств штукатурных растворов в зависимости от количества микросфер и суперпластификатора, которые необходимы для оптимизации состава композиции.
- Установлено, что цементные растворы с ПСМС имеют водоудерживающую способность более 90 %, достигающую значение 98 %. При увеличении погружения конуса от 4...8 до 8...10 и 10...14 см водоудерживающая способность растворов уменьшается за счет повышения содержания воды в растворе и снижения поверхностной активности микросфер.
- Определено, что при одинаковой подвижности раствора прочность сцепления с основаниями уменьшается по мере увеличения расхода микросфер. При снижении подвижности раствора, прочность сцепления штукатурных растворов с ПСМС с различными основаниями увеличивается. Установленные значения прочности сцепления растворов с основаниями соответствуют требованиям нормативов по прочности сцепления при наружной и при внутренней отделке.
- Установлено влияние содержания полых стеклянных микросфер в цементной системе на набор прочности и сроки схватывания: чем ниже содержание наполнителя в цементной системе, тем быстрее раствор набирает пластическую прочность и происходит увеличение значений напряжения сдвига. Более того, с ростом количества микросфер для всех видов растворов, сроки схватывания увеличиваются за счет повышения воды затворения. Определено, что более высокой подвижности раствора соответствует более высокие сроки начала и конца схватывания.
- Определено, что гелевая пористость максимальна при расходе ПСМС 10 % от массы ПЦ и равна 94 % от пористости цементной матрицы, а при расходе микросфер 50 % и ПК 10…14 см гелевая пористость снижается до 80,6 % за счет более высокого водозатворения. При этом все механические свойства у затвердевшего раствора с ПК 4…8 см выше, чем у более подвижных растворов с ПСМС.
- Установлено, что общая пористость затвердевшего раствора повышается по мере роста ПК и расхода ПСМС: при 10 % микросфер ПК = 4…8 см она составляет 28,5 % при пористости матрицы, равной 9,6 %, при общей пористости у состава с 50 % ПСМС с ПК = 10…14 см – 88,1 % при пористости матрицы –