авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 |   ...   | 2 | 3 || 5 | 6 |

Методы и модели прогнозирования показателей дифференциации и поляризации денежных доходов населения

-- [ Страница 4 ] --

Параметр имеет слабоколебательный рост, а параметр , достигнув в 2001 году величины 0,74, в дальнейшем стабилизируется на уровне близком к 0,755.

На базе отчетных параметров распределения и прогнозных показателей демографии, макроэкономики и структуры денежных доходов БДРН разработаны методы аналитического прогноза параметров распределения.

Параметры и (1.1) двухпараметрического логарифмически нормального распределения населения по уровню СДД, определяются величинами Хс и Хmod :

= (1/3) ln(ХmodХс2) 2 = (2/3)(lnХс - lnХmod)

Здесь Хс - математическое ожидание. По экономическому смыслу соответствует среднему значению среднедушевого среднемесячного денежного дохода в генеральной совокупности. С одной стороны, Хс определяется делением денежных доходов населения на среднегодовую численность населения, а с другой – параметрами логнормального распределения: Хс = exp( + 0,52).

Модальное значение среднедушевого среднемесячного денежного дохода в генеральной совокупности Хmod, соответствует (в ближайшей окрестности) доходам наиболее многочисленной группы населения. С одной стороны, Хmod ретроспективно определяется на основе данных выборочного обследования, а с другой - Хmod -значение дохода, при котором плотность распределения населения по уровню дохода f(x) достигает своего максимального значения. Модальное значение определяется через те же параметры логнормального распределения: Хmod =exp( - 2).

Таким образом, задача прогноза плотности распределения населения по среднедушевому среднемесячному денежному доходу fi+1 (x) сводится к получению любой пары прогнозных значений параметров из четырех сi+1, Xmodi+1, i+1, i+1).

Прогноз параметров распределения базируется на следующих предпосылках:

1. Характеристики распределения населения по среднедушевому среднемесячному денежному доходу подчиняются двухпараметрическому логнормальному распределению с параметрами i+1 и i+1, и эти параметры вычисляются через показатели, имеющие явный экономический смысл: модальное значение дохода - Xmodi+1 и среднее значение дохода - Хсi+1.

2. В установившейся (или слабо меняющейся) структуре распределения денежных доходов населения темп роста модального значения дохода modi+1 соответствует темпу роста среднего значения дохода в выборочной совокупности вi+1.

Каждый прогнозный расчет производится для среднегодовых показателей. Для расчета прогнозных показателей Xmodi+1 и Хсi+1 используются отчетные и прогнозные макропоказатели, демографические данные и показатели структуры доходов БДРН для моментов времени i+1 и i соответственно.

Прогнозное значение Хсi+1 - среднедушевой среднемесячный денежный доход в генеральной совокупности определяется по макропоказателям:

Хсi+1 = PIi+1/(12Ni+1) = ВВПi+1 dPIi+1/(12Ni+1).

Для момента времени i+1 используются значения показателей предшествующих уровней прогноза: Ni+1 –среднегодовой численности населения; INi+1 - темпа изменения численности населения; ВВПi+1 – значения ВВП в текущих ценах; IVTi+1 - темпа роста ВВП; PIi+1 – объема денежных доходов населения; dPIi+1 – доли денежных доходов населения в ВВП; IdPIi+1 - темпа изменения доли доходов населения в ВВП.

Для прогноза второго параметра – модального значения Xmodi+1 - потребовалось экспертно уточнить численность населения, имеющего прямой доступ к предпринимательским доходам и уточнить структуру доходов в БДРН. Один из вариантов экспертной оценки численности лиц, имеющих прямой доступ к предпринимательским доходам, приведен в диссертации. Результаты оказались близкими к оценкам Росстата.

В ходе исследований автором доказано, что прогнозное модальное значение денежного дохода в генеральной совокупности Xmodi+1 определяется следующим образом:

Xmodi+1 = Xmodi kSi+1 = Xmodi сi+1 DSi+1 kSi+1. (1.2)

где DSi+1 = DSi+1 /DSi

DSi+1 = Wi+1, + TRi+1 – доля суммарных доходов оплаты труда и трансфертов в уточненной структуре доходов БДРН; Wi+1 – доля оплаты труда; TRi+1 - доля трансфертов населению.

Коэффициент kSi+1 отражает компенсационное воздействие агрегированных показателей структуры БДРН на формирование показателя - темп роста модального значения дохода modi+1. Величина коэффициента kSi+1 мало отличается от единицы:

kSi+1 (1,0011,004).

Для расчета прогнозного значения дисперсии 2i+1 – индикатора дифференциации - получаем аналитическое выражение:

i+12 = i+12 - i2 = ln или i+12 = i2 - ln

Дисперсия снижается, если в прогнозируемом периоде величина суммарной доли оплаты труда и трансфертов в БДРН будет выше, чем в отчетном. И наоборот, если в прогнозируемом периоде величина суммарной доли оплаты труда и трансфертов в БДРН будет ниже, чем в отчетном, то дисперсия возрастает.

Для расчета второго параметра распределения i+1, в общем случае, используя выражение (1.2), имеем:

i+1 = ln. Отсюда i+1 = i + ln+ln

Аналитическое выражение для расчета прогнозного значения параметра i+1, определяемого с использованием макроэкономических показателей принимает вид:

i+1 = i + ln IVTi+1 + ln IdPIi+1 + (1/3)ln IDSi+1 - ln INi+1.

Прирост определяется индексами: ВВП в текущих ценах; доли доходов в ВВП; доли доходов в структуре БДРН и численности населения. Такая запись дает возможность оценить вклад каждого перечисленного фактора в изменение величины параметра .

Методы и модели прогноза уровня бедности. Решению задачи прогноза уровня бедности предшествует решение двух независимых задач прогноза: прожиточного минимума и параметров распределения населения по уровню среднедушевого среднемесячного денежного дохода.

Проблема оценки прожиточного минимума является одной из самых сложных в силу многофакторности, неформализуемости и расплывчатости областей определения. Эта проблема включает в себя учет медико-биологических, географических, климатических, этнических, социальных, демографических, профессиональных, экономических, правовых, технологических и других факторов. Поэтому для решения математических проблем прогноза рассматривается максимально упрощенный аспект объемно-ценового содержания понятия «Прожиточный Минимум (ПМ)». Учитывается только объем Vi+1 корзины ПМ и условная цена единицы такой корзины PVMi+1. В такой редакции ПМ определяется так: PMi+1 = Vi+1PVM i+1.

Имеет смысл сравнивать между собой только равные (или сопоставимые) корзины, то есть, логично полагать Vi = Vi+1. Отношение (PVM i+1/PVM i) есть индекс цен прожиточного минимума (IPMi+1). Тогда темп роста прожиточного минимума ПМi+1 равен: ПМi+1 = PMi+1 /PMi = (PVMi+1 /PVMi)(Vi+1/Vi) = IPMi+1.

При принятых допущениях это означает, что темп роста прожиточного минимума равен индексу цен прожиточного минимума.

Вторая задача – прогноз параметров распределения населения по уровню среднедушевого среднемесячного денежного дохода была решена выше. Тогда, если в качестве верхнего предела прогнозной функции распределения Fi+1(0<x<Х) рассматривать прожиточный минимум ПМ, то получаем долю численности населения, имеющего доходы ниже прожиточного минимума (или уровень бедности YБ):

YБ = FН(0<x<ПМ) = du.

Анализ сравнения Xmod с ПМ за семь лет (1998-2004) показывал, что величина ПМ мало отличалась от модального значения дохода Xmod.

Таблица 2

Динамика отношения модального значения дохода к прожиточному минимуму

Год

1998

1999

2000

2001

2002

2003

2004

ПМ/Хmod

1,093

1,172

1,081

1,034

1,045

1,035

0,968

Как видно из таблицы 2, ежегодно происходило как бы синхронное повышение Xmod и ПМ. Стабильность отношения ПМ/Хmod открывала возможность применения свойств логнормального распределения, объясняемых Xmod.. Была использована оценка величины доли численности населения с доходами ниже Xmod :

Fm(0<x<Xmod) Sm() = 0,5fm(Xmod)Xmod

и получены оценки доли численности бедного населения как функции отношения ПМ и Xmod. Практически без громоздких вычислений получены оценки доли численности населения, находящегося за чертой бедности. Автором доказано, что в окрестности значений Xmod величина уровня бедности является квадратичной функцией Z:

YБ (Z) SmZ2, где Z = (ПМ/Хmod).

Используя известные приемы (логарифмируя, дифференцируя и переходя к конечным приращениям) из этого выражения получена итерационная оценка прогноза изменения уровня бедности:

YБ/YБ 2(Z/Z)

Из последнего уравнения следует фундаментальный вывод: в окрестности Хmod относительное снижение доли ПМ в Хmod на n % влечет относительное снижение уровня бедности на 2n%. Справедливо и обратное утверждение: относительное увеличение доли ПМ в Хmod на n % влечет относительное увеличение уровня бедности на 2n%.

Из этого же уравнения получена простая и прозрачная формула для итерационного процесса расчета прогнозных оценок уровня бедности:

YБi+1 = 2YБi(Zi+1/Zi) - YБi

Экономический смысл абсолютного приращения Zi+1 = Zi+1 - Zi следует из определения этой величины:

Zi+1 = Zi--1modi+1(IPMi+1 - modi+1).

И оценка знака для прогноза уровня бедности приобретает вид:

SignYБi+1 = signZi+1

Если прогноз темпа роста модального значения денежного дохода, превышает темп роста прожиточного минимума, то прогнозируемый уровень бедности YБi+1 снижается.

Если прогноз темпа роста прожиточного минимума превышает темп роста модального значения денежного дохода, то прогнозируемый уровень бедности YБi+1 возрастает.

Учитывая, что темп роста модального значения определяется макроэкономическими показателями:

modi+1 = сi+1DSi+1 = IVTi+1IdPIi+1IDSi+1/INi+1,

то и оценку знака для прогноза уровня бедности тоже определим в терминах макроэкономических показателей:

SignYБi+1 = sign(INi+1IPMi+1 – IVTi+1IdPIi+1IDSi+1).

Макроэкономический анализ оценки знака прогнозного значения уровня бедности приводит к следующим выводам:

1. Если произведение прогнозных значений темпов роста ВВП, доли денежных доходов населения в ВВП и суммарной доли оплаты труда и трансфертов в структуре БДРН превышает произведение прогнозных значений темпов роста численности населения и прожиточного минимума, то прогнозируемый уровень бедности снижается. То есть, если

IVTi+1 IdPIi+1IDSi+1 > IPМi+1 INi+1, то YБi+1 < 0.

2. Если произведение прогнозных значений темпов роста ВВП, доли денежных доходов населения в ВВП и суммарной доли оплаты труда и трансфертов в структуре БДРН меньше произведения прогнозных значений темпов роста численности населения и прожиточного минимума, то прогнозируемый уровень бедности возрастает. То есть, если

IVTi+1 IdPIi+1IDSi+1 < IPМi+1 INi+1, то YБi+1 > 0.

Примеры отчетных и прогнозных расчетов оценок уровня бедности за 2002-2007 годы приведены в таблице 3.

Таблица 3

Отчетные и прогнозные расчеты оценок уровня бедности YБ

Год

2002

2003

2004

2005

2006

2007

ПМ

1808

2112

2376

3018

3422

3847

YБ %

25

20,5

17,6%

17,7%

15,3%

14,5%



Pages:     | 1 |   ...   | 2 | 3 || 5 | 6 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.