авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 | 2 || 4 |

Разработка модели оценки рисков инвестиционных решений нефтегазовой компании

-- [ Страница 3 ] --

где: МВоУ, НвеУ и ОУ – соответственно максимально возможный, наиболее вероятный и ожидаемый убыток либо по одному из оцениваемых решений, либо в целом по портфелю; ФВ-финансовые возможности по покрытию убытков. Значение какого-либо из указанных коэффициентов, превышающее 1, отвечает ситуации, когда компания не имеет финансовых возможностей по покрытию соответствующего убытка. В ином случае компания обладает финансовыми возможностями по покрытию соответствующего убытка. Указанные выше коэффициенты могут применяться также и при решении вопроса о пороговых значениях по размеру возможного ущерба. Так, если компания имеет финансовые возможности по покрытию максимально возможного, наиболее вероятного или ожидаемого убытков по некоторому решению в размере заданные, утвержденные специалистами и/или руководителями значения соответствующих коэффициентов можно рассчитать по формулам:

(4)

Эти коэффициенты дают возможность определить соответствующие пороговые значения максимально возможного, наиболее вероятного и ожидаемого убытков следующим образом:

(5)

В качестве соответствующих критериальных показателей, для которых устанавливаются пороговые значения, как правило, используются так называемые меры риска, т.е. величины, численно выражающие размер соответствующего риска. Чаще всего это-размер ущерба и/или вероятность его возникновения. Если обозначить величину ущерба , вероятность его возникновения , то ограничения для них можно записать следующим образом:

 (6) Для i-го риска размер случайного убытка изменяется в пределах: -44  (6) Для i-го риска размер случайного убытка изменяется в пределах:,-45

(6)

Для i-го риска размер случайного убытка изменяется в пределах:

,

(7)

где: и, соответственно минимальный и максимальный возможный убыток по i-му риску.-48и , соответственно минимальный и максимальный возможный убыток по i-му риску.-49, соответственно минимальный и максимальный возможный убыток по i-му риску. Тогда размер общего (суммарного) случайного убытка изменяется в пределах:

 (8) где n - число оцениваемых рисков. Общий ожидаемый убыток-50

(8)

где n - число оцениваемых рисков.

Общий ожидаемый убыток определяется по формуле:

(9)

где- математическое ожидание общего ущерба, - математическое ожидание ущерба по i-му риску. Между ожидаемым суммарным-54- математическое ожидание ущерба по i-му риску. Между ожидаемым суммарным ущербом и максимально возможным ущербом В соблюдается соотношение:

(10)

Наиболее вероятный убыток может быть определен на основе плотности распределения f(Y) случайного суммарного убытка:

(11)

Плотность распределения случайной величины определяется стандартным образом по совместной плотности распределения случайных убытков. Сказанное выше позволяет предложить следующее эвристическое правило оценки случайного ущерба от осуществления рисковых событий: пессимист должен ориентироваться на максимально возможное значение суммарного случайного убытка ; умеренный оптимист может использовать наиболее вероятное значение убытка ; «реалист» же ориентируется на ожидаемый убыток и учитывает целый диапазон [A,VaR] наиболее вероятных значений случайного убытка .

Пороговые значения для разных критериальных показателей будут взаимосвязаны друг c другом. Например, интервалы вероятностей и интервалы возможных убытков часто нельзя рассматривать изолированно друг от друга, так как между ними имеет место зависимость, выражаемая понятием плотности распределения. Соответствующие аспекты должны быть обязательно учтены при оценке рисков.

3. Методика оценки рисков инвестиционных решений нефтегазовой компании на основе экономико-математического инструментария; оценка эффективности практического применения методики в нефтегазовой компании.

При поэтапной реализации стратегии предполагается принятие последовательных промежуточных решений, каждому из них будут свойственны свои факторы риска. В диссертации рассмотрена модель управления реализацией решения с учетом возможных факторов риска. Формирование решения состоит из нескольких этапов. На каждом этапе возможны альтернативные направления реализации. Каждое из этих направлений характеризуется вероятностью возникновения ущерба, связанного, например, с конъюнктурой рынка, срывом поставок комплектующих и т.д., а также величиной ущерба и возможной прибылью. Необходимо разработать стратегию управления инвестициями, которая позволила бы реализовать решение с максимальной прибылью при допустимом уровне затрат.

Построим модель ситуации в следующем виде:

Стратегия состоит из трех этапов: выбор решений разведки и добычи; выбор решений эксплуатации месторождений; формирование структуры инвестиций. Пусть М = {1,..., m} – множество этапов реализации стратегии, на каждом из которых действуют соответственно свои факторы риска; N = {1,..., n} – множество возможных вариантов реализации; || ||, k =0, m; i =1, m; j = 1, n – матрица вероятностей возникновения ущерба при переходе реализации решения из k-го этапа на i-й этап по j-му направлению; k = 0 – исходный этап реализации стратегии; || ||, k =0, m; i =1, m; j = 1, n – матрица затрат (возможного ущерба) при переходе реализации стратегии из k-го этапа на i-й этап по j-му направлению; || ||, k =0, m; i =1, m; j = 1, n – матрица ожидаемой прибыли (выгоды) при переходе реализации стратегии из k-го этапа на i-й этап по j-му направлению.

где:1 - если из k-го этапа осуществляется переход на i-й этап по j-му направлению,

0 – иначе.

Найти такую стратегию управления реализацией решения

из множества допустимых, при которой ожидаемый эффект будет максимален, а возможные потери будут не больше допустимых, т.е. необходимо найти набор переменных из условия:

(12)

при ограничениях:

(13)

Используем формализацию критериев, приведенную в главе 2. В этом случае, предположим, что на первом этапе формирования решения имеется возможность вложения в варианты «ЛУКОЙЛ, ОАО: Добыча нефти: OOO КомиАрктикОйл» (1), в «ЛУКОЙЛ, ОАО: установка производства водорода (строительство): ООО Коминефть» (2) или «ЛУКОЙЛ, ОАО: Добыча газа: ЗАО ЛУКОЙЛ-АИК» (3); второй этап реализации решения характеризуется предложениями по выбору вариантов эксплуатации месторождений в «ЛУКОЙЛ, ОАО: Переработка нефти: OOO «ЛУКОЙЛ–Одесский НПЗ» (1), «ЛУКОЙЛ, ОАО: Переработка нефти: «OOO Интесмо» (2), «ЛУКОЙЛ, ОАО: Сбыт нефти: «ООО «ТЭК Урал»» (3), «ЛУКОЙЛ, ОАО: Нефтехимия: «ЗАО «ЛУКОЙЛ-Нефтехим»» (4); на третьем этапе - с учетом различных объемов вложений возможны три варианта реализации стратегии (1), (2), (3), каждый из которых с учетом принятых обозначений характеризуется величинами, приведенными в таблице 3.

Таблица 3 - Характеристика решений

Этап 1 (Разведка и добыча)

1

2

3

р011=0,3

р012=0,5

р013=0,2

а011=1100 млн. долл.

а012=1120 млн. долл.

а013=1180 млн. долл.

b011=1150 млн. долл.

b012=1250 млн. долл.

b013=1150 млн. долл.

Этап 2 (Эксплуатации месторождений)

1

2

3

4

р121=0,2

р122=0,3

р123=0,4

р124=0,1

а121=1200 млн.долл.

а122=1230 млн.долл.

а123=1300 млн.долл.

а124=1200 млн. долл.

b121=1500 млн.долл.

b122=1500 млн.долл.

b123=1700 млн.долл.

b124=1500 млн. долл.

Этап 3 (Структура инвестиций)

1

2

3

р231=0,1

р232=0,3

р233=0,6

а231=1200 млн. долл.

а232=1300 млн. долл.

а233=1350 млн. долл.

b231=1600 млн. долл.

b232=1750 млн. долл.

b233=1800 млн. долл.

Предположим, что математическое ожидание ущерба при реализации решения не должно превышать 1100 млн. долл. (допустимый риск). Для рассматриваемой задачи алгоритм решения может быть построен с помощью следующих эвристических правил:

    1. Обеспечение максимума прибыли на каждом этапе реализации решения.

Аналитически данное решающее правило может быть записано следующим образом:

(14)

  1. Обеспечение минимума потерь на каждом этапе реализации решения. Это правило может быть записано как:

(15)

  1. Обеспечение максимума удельной прибыли на каждом этапе реализации решения, т.е.

(16)



Pages:     | 1 | 2 || 4 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.