авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:     | 1 || 3 |

Детальные исследованияобластей звездообразования на основе прецизионноймолекулярной спектроскопии

-- [ Страница 2 ] --

Благодарности.

Автор выражает глубокую признательность и благодарность всем сотрудникам, оказавшим помощь при выполнении работ, заложивших основу для данной диссертации, а именно, сотрудникам ИФП РАН: А.Ф. Андриянову, А.Б. Бурову, В.Ф. Вдовину, В.Н. Воронову, И.В. Замятину, А.А. Красильникову, А.Г. Кислякову, А.В. Кузнецову, Э.П. Кукиной, И.В. Лапкину, П.Л. Никифорову, В.Н. Шанину, А.М. Штанюку, В.М. Юркову; сотрудникам РИ АН Украины: А.В. Антюфееву, Л.Б. Князькову, В.В. Мышенко, В.М. Шульге, а также персоналу РТ-22 КрАО, руководимому Н.С. Нестеровым, – за подготовку и проведение совместных радиоастрономических измерений; Й.Й. Берулису и А.М. Толмачеву за совместные измерения на РТ-22 ФИАН в г. Пущино; профессору К. Маттиле, К. Лехтинену, Й. Харью, М. Ювеле, М. Торисеве из Хельсинского университета за обсуждение, помощь и радушный прием при проведении измерений в Мецахови (Финляндия), а также на SEST (Чили). Особая благодарность выражается Л.Э.Б. Йохансону (Онсала, Швеция); П. Шильке и К. Хенкелю (Институт радиоастрономии им. М. Планка, Бонн, Германия), Р. Пенгу (CSO, Гавайи), Г. Поберу и К. Туму (IRAM) за неоднократную помощь при проведении наблюдений, составивших основной наблюдательный материал диссертации, а также Г. Каццоли, К. Пуццарини (Университет г. Болонья, Италия), Г.Ю. Голубятникову и В.Н. Маркову (ИПФ РАН) и А. Гварнери (Университет г. Киль, Германия) за помощь в спектроскопии астрофизически важных молекул; Н.Р. Троицкому и С.Н. Замоздре – за совместное моделирование L1544. Глубокая признательность за руководство диссертацией выражается д.ф.-м.н. И.И. Зинченко.

Все представленные исследования выполнены в соответствии с планом работ ИПФ РАН, в частности, при поддержке РФФИ: “Исследование физических условий в областях образования массивных звезд на основе радиоастрономических наблюдений на миллиметровых и субмиллиметровых волнах” (грант РФФИ 94-02-04861-а), “Физико-химическое состояние, структура и кинематика плотных газо-пылевых конденсаций в областях звездообразования” (грант РФФИ 96-02-16472-а), “Свойства и динамика плотного молекулярного газа в окрестностях молодых звездных объектов” (грант РФФИ 99-02-16556-а), “Строение и эволюция плотных газо-пылевых конденсаций в областях звездообразования” (грант РФФИ 03-02-16307-а), “Исследование спектров ряда молекул, имеющих важное значение для радиоастрономии и астрофизики, оптимизация спектрометров субмиллиметрового диапазона длин” (грант РФФИ-ННИО 04-02-04003-а), “Физико-химическая структура областей звездообразования” (грант РФФИ 06-02-16317-а). Работа была поддержана Программой фундаментальных исследований ОФН РАН “Протяженные объекты во Вселенной”, международными проектами “Dense cores in interstellar molecular clouds” (грант INTAS 93-2168), “Study of dynamical processes at early stages of stellar evolution using contemporary millimeter wave receiving technologies” (грант INTAS 99-1667), грантами ESO, DFG, CRDF, фондом Дж. Сороса.

Структура и объем работы.

Диссертация состоит из введения, трех основных глав, заключения, списка работ автора, цитированной литературы и четырех приложений. Общий объем диссертации составляет 167 страниц, включая 27 таблиц, 52 рисунка и 246 библиографических наименований.



КРАТКОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ

Во Введении (Глава 1) показаны актуальность и цель выполненной работы, определен предмет исследования, кратко изложены основные результаты, представленные к защите, отмечена их новизна, а также научная и практическая значимость.

Глава 2 посвящена изложению результатов исследования плотных ядер в областях образования звезд большой массы, выполненных по наблюдениям большого количества линий молекул CS, C34S, CO и C18O при помощи радиотелескопов SEST-15m (Чили) и CSO-10.4m (Гавайи) [18, 30]. В результате анализа всего объема полученных данных, включающего подробные карты в линиях молекул, данные из литературы в континууме, мазерах H2O, OH, CH3OH, а также наблюдения в оптике, определены параметры исследованных источников, выявлены характерные особенности объектов данного типа и предложены их модели. Для анализа полученных карт источников использована написанная автором диссертации компьютерная программа восстановления изображений, основанная на принципе максимума энтропии (МЕМ) [22]. В ядрах двух объектов (G268.42–0.85 и G301.12–0.20) по линиям CS выявлены вращающиеся диски. В G268.42–0.85 дисковая структура обнаружена также в C18O J=1–0. Найдено, что для всех наблюдавшихся объектов восстановленный размер источников довольно резко уменьшается с ростом энергии верхнего уровня наблюдаемого перехода, а ширина линий CS уменьшается с удалением от центра источников. Несмотря на то, что уменьшение ширины линий с ростом расстояния до центра источников на первый взгляд противоречит известному ларсоновскому закону [9*], обнаруженный эффект вполне естественно объясняется высокой активностью внутренних ядер в областях звездообразования, когда дисперсия скоростей за счет внутренних движений максимальна именно в центре. По оптически тонким линиям C18O J=1–0 получена оценка лучевой концентрации молекул H2, оказавшаяся близкой к 1023 см-2, а из наблюдений C34S найдено, что относительные распространенности CS близки к 5·10-9.

В разделе 2.1 дается обоснование задачи, описываются преимущества выбранных молекул и вращательных переходов для определения физических условий в областях активного образования звезд большой массы, кратко описываются результаты предыдущих исследований. Несмотря на то, что основное содержание данной главы посвящено детальному изучению ряда источников южной полусферы, данные исследования являются продолжением большого цикла работ, проводившихся в ИПФ РАН на протяжении многих лет и направленных на поиск и изучение характерных особенностей подобного класса объектов. Так, благодаря разработке уникального автоматизированного комплекса для спектральных исследований в диапазоне длин волн
2–4 мм [40], были выполнены систематические исследования около 100 молекулярных облаков, связанных с областями HII Шарплеса, в линии HCN J=1–0 [37, 39] при помощи радиотелескопа РТ-22 Крымской астрофизической обсерватории. Благодаря высокой распространенности HCN и большому дипольному моменту, 2.985 D [10*], линия основного вращательного перехода J=1–0 на частоте 88.631 ГГц оказалась крайне удобным зондом для поиска и диагностики наиболее плотных центральных ядер в областях звездообразования. В результате анализа выполненных измерений обнаружено систематическое уменьшение относительного числа облаков с заметным излучением HCN по мере увеличения расстояния до центра Галактики [35, 38]. Проведенные исследования были существенно дополнены измерениями отдельных объектов в оптически тонких линиях H13CN J=1–0. Аналогичные исследования при помощи РТ-22 КрАО проведены в линиях HCO+ J=1–0 и H13CO+ J=1–0 [21, 23, 29, 34]. Несколько меньшая выборка молекулярных облаков исследована в линиях C3H2 [26, 28] и в нескольких переходах HC3N. При этом переход HC3N J=4–3 наблюдался при помощи радиоастрономической станции ФИАН им. П.Н. Лебедева. Для ряда источников, таких как G10.6–0.4 и G35.2–0.74, на основе измеренных карт в линиях многих молекул и разработанных автором диссертации программ решения переноса излучения методом Монте-Карло построены детальные модели, описывающие всю совокупность полученных данных [33]. Детальные исследования областей звездообразования северной полусферы по измерениям линии CS J=2–1 и HCN J=1–0 выполнены при помощи 14-м радиотелескопа Мецахови (Финляндия) [27].

Раздел 2.2 диссертации содержит краткое описание параметров использованной аппаратуры, включая шумовую температуру, угловое и частотное разрешение.

В разделе 2.3 описаны методы анализа выполненных изображений, проводившиеся тремя разными способами, в том числе и при помощи разработанной программы восстановления методом максимума энтропии (Приложение A).

Для относительно высоких отношений S/N (30) данный метод позволяет существенно повысить угловое разрешение в отсутствии каких либо априорных данных о форме источника при условии хорошего знания диаграммы направленности. Было найдено, что МЕМ восстановление безупречно работает для измерений на CSO (Гавайи). В то же время для данных SEST (Чили) обнаружено, что реальная ошибка в интенсивностях может в несколько превышать измеренную по базовой линии. Указаны возможные причины данного расхождения и предложена методика, в которой ошибки измерения могут оцениваться непосредственно в ходе деконволюции.

Раздел 2.4 содержит список наблюдавшихся областей, их морфологию, а также четыре подраздела, посвященные результатам измерений каждого из южных источников, включая сравнительный анализ с данными из литературы. В частности, на рис. 2.1 диссертации приведены одновременные карты G261.64–2.09 на 0.8 мм в линиях CS J=7–6 и CO J=3–2. Несмотря на одинаковое пространственное разрешение, изображения существенно различаются вследствие разной критической плотности переходов. Данный факт наглядно показывает, почему при исследованиях областей звездообразования мы не можем ограничиться лишь каким-то одним переходом или даже несколькими переходами, но какой-то одной молекулы. Здесь же приведено большое количество результатов для области звездообразования G268.42–0.85, для которой удалось уверенно обнаружить и исследовать вращающуюся дисковую структуру, перпендикулярную к биполярному истечению газа. Для всех четырех источников приведены детальные сравнения построенных карт с излучением в ближнем и дальнем ИК диапазоне, излучением областей HII, распределением и характеристиками мазеров H2O, OH, CH3OH и излучением в оптике. Для каждого из источников приведены наблюдаемые линии в направлении пространственных максимумов, а также таблицы с параметрами измеренных линий.

В разделе 2.5 выполнены оценки параметров областей с учетом распределений интенсивности, исправленных за сглаживание диаграммой направленности. Для всех источников приведены зависимости яркостной температуры и восстановленного размера в зависимости от квантового числа J наблюдаемых переходов в CS. Показано, что в результате активного звездообразования в ядрах выбранных областей, наблюдаемая ширина линий CS убывает с увеличением расстояния от центра. Определены оптические толщины и лучевые концентрации молекул CS, по найденным лучевым концентрациям молекул C18O определено содержание на луче молекул H2 и относительное содержание молекул CS к H2.

Раздел 2.6 содержит основные выводы данной главы.

Глава 3 посвящена исследованию темных маломассивных облаков, а именно – формированию профилей линий молекул HCN [36] и их наблюдениям [6, 11,16, 17, 20]. Интерес к физическим условиям в этих объектах и в том числе к динамике газа, определяемой из анализа профилей линий, объясняется в первую очередь их связью с областями образования звезд наподобие Солнца. На основе модельных расчетов объяснен механизм формирования аномальных отношений сверхтонких компонент перехода HCN J=1–0 темных облаках, что оставалось долгое время не ясным. Показано, что рост турбулентности к краю облака является необходимым условием для превышения излучения в компоненте F=0–1 в сравнении с остальными линиями. Составлена компьютерная программа, позволяющая решать задачу переноса излучения методом Монте-Карло для любого количества уровней с учетом всех возможных перекрытий линий, как локального, так и нелокального характера, для любого соотношения между микротурбулентными и систематическими скоростями и при любой зависимости скорости сжатия от расстояния до центра облака. Приведены результаты обзора 50 темных облаков, выполненных с максимальным частотным разрешением при помощи радиотелескопов IRAM-30m и OSO-20m. Найдено, что характерные детали самообращения на асимметричных профилях HCN находятся в хорошем согласии с результатами выполненных расчетов. Экспериментально показано, что вследствие высокого содержания HCN в межзвездной среде, большого дипольного момента и возможности одновременных измерений нескольких компонент с разной оптической толщиной, данная молекула является одним из наиболее эффективных зондов для поиска и исследования коллапсирующих ядер в областях звездообразования. Найдено, что из 50 исследованных источников примерно половина обладает признаками внутренних систематических движений. При этом 17 объектов уверенно ассоциируются с коллапсирующими ядрами. Четыре из 11 детально прокартированных источников являются дифференциально вращающимися. В двух объектах характер асимметрии HCN линий соответствует ускоренному коллапсу в направлении ядра и расширению оболочки.





Раздел 3.1 описывает суть проблемы, структуру уровней и спектр HCN, наблюдения, предшествовавшие выполненным расчетам, а также метод решения переноса излучения, приведенный подробнее в Приложении B. В разделе 3.2 дана модель облака и диапазоны значений параметров. Результаты расчетов профилей линий HCN J=1–0 приведены в разделе 3.3. Показан разный характер асимметрии профилей в случае коллапса облака и при его расширении, зависимость глубины провала на линиях излучения от числа молекул на луче зрения. Несмотря на то, что рассчитанные особенности на профилях HCN на момент написания статьи [36] были далеко за пределами стандартных аппаратурных возможностей, был проведен подробный анализ влияния разреженной поглощающей оболочки модели облака на форму линий и приведены наиболее характерные профили. На последнем рисунке раздела (рис. 3.6) приведена серия рассчитанных профилей HCN с аномальной сверхтонкой структурой. В тексте показано, что рост турбулентности к краю облака является необходимым условием для превышения излучения в компоненте F=0–1 в сравнении с остальными линиями. В разделе 3.4 приведены результаты измерений HCN при помощи IRAM-30m и OSO-20m. На примере источников L1498 и L1512 с разной асимметрией линий показана критичность тонких деталей на профилях HCN к выбору частотного разрешения. Обнаружено уменьшение интегральной интенсивности HCN в направлении на центр темного облака L1498, согласующееся с вымораживанием на пыли для ряда других молекул. Для источников B217SW, L1544 и ряда других из изменения асимметрии линий выявлено дифференциальное вращение, доказанное в модельных расчетах [7,10]. В облаке B335 (а также L429-1) из разного вида асимметрии в разных сверхтонких компонентах выявлен ускоренный коллапс на центр облака, согласующийся с inside-out моделью Шу [11*], и расширение оболочки. Измерена тонкая структура аномальных профилей HCN с максимальной интенсивностью в F=0–1 для L260-NH3, L694-2, L1197 и TMC-1/HC3N. В первых трех источниках данные аномалии обнаружены впервые. В результате обзора 50 темных облаков найдено, что примерно половина объектов обладает признаками внутренних систематических движений. При этом 17 источников уверенно ассоциируются с коллапсирующими ядрами. Четыре объекта из 11 детально прокартированных источников являются дифференциально вращающимися. В разделе 3.5 кратко перечислены основные выводы.



Pages:     | 1 || 3 |
 

Похожие работы:










 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.