авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:     | 1 ||

Обоснование Конструктивных параметров УСТАНОВКИ для ВЫВЕДЕНИЯ кормовых ФОСФОЛИПИДОВ ИЗ ПОДСОЛНЕЧНОГО

-- [ Страница 2 ] --

Рисунок 2 - Схема получения эмульсии в кавитаторе предлагаемой установки для гидратации подсолнечного масла

Для определения скорости потока при истечении жидкости через сопло запишем уравнение Бернулли и уравнение расхода для сечений 1-1 и 2-2 (рисунок 3):

, (14)

где z1, z2 – геометрический напор в сечении 1-1 и 2-2, м;

p1, p2 – абсолютное давление в сечении 1-1 и 2-2, Па;

– объёмный (удельный) вес, H/м3;

1, 2 – скорость течения жидкости в сечении 1-1 и 2-2, м/с;

h – суммарные потери напора на участке между рассматриваемыми сечениями, м.

, (15)

где S1, S2 – площадь поперечного сечения трубопровода 1-1 и 2-2, м2;

1 - коэффициент сжатия.

В результате математического преобразования на основе гидравлических формул уравнение (13) примет вид:

(16)

где – коэффициент сопротивления;

d1 – диаметр трубопровода, м;

d2 – диаметр сопла, м.

pм – давление масла перед кавитатором, Па.

Основной характеристикой эмульсии является дисперсность смеси. Она выражается диаметром частиц смешиваемых жидкостей.

Зависимость между числом кавитации и размером частиц можно выразить уравнением:

, (17)

где d0 – начальный диаметр частиц, м;

k1, k2 – экспериментально определяемые коэффициенты, м.

Параметры процесса кавитационной гидратации и установки для выведения кормовых фосфолипидов таковы: pn=2425 Па; =9070 H/м3; =0,03; 1=1; d1=0,005 м; d2=0,0036 м; pм = 1·106 Па; =925 кг/м3; d0 = 25·10-6 м; k1 = 26·10-6 м; k2 = 7·10-6 м. На основе этих данных построена зависимость размера частиц dч от давления масла перед кавитатором pм (рисунок 3).

 Зависимость размера частиц от-27

Рисунок 3 - Зависимость размера частиц от давления масла

С увеличением давления масла до pм = 1,5 МПа размер частиц dч уменьшается (рисунок 3), так как увеличивается число кавитации, далее происходит незначительный рост размеров частиц, из-за того, что происходит слияние и укрупнение кавитационных пузырьков, в результате чего уменьшается сила удара при схлопывании.

При кавитации рост пузырьков сменяется их схлопыванием. Весь процесс образования кавитации занимает время около tок = 0,5·10-3 с. Во время схлопывания, при ударе об отражатель, образуется ударная волна, сопровождающаяся резким повышением температуры и давления газов. При этом расстояние от сопла до отражателя l должно обеспечивать образование кавитационных пузырьков и схлопывание в момент удара об отражатель:

, (18)

где tок – время образования кавитационного пузырька, с.

На основании вышесказанного можно построить зависимость требуемого расстояния между соплом и отражателем l от скорости течения жидкости в сопле 2 (рисунок 4).

  Зависимость требуемого-29

Рисунок 4 – Зависимость требуемого расстояния между соплом и отражателем от скорости течения жидкости в сопле



В третьей главе «Программа и методика экспериментальных исследований» изложены: цель экспериментальных исследований; описание экспериментальной установки и обоснование ее параметров; методика проведения экспериментальных исследований; методика обработки данных, полученных по результатам экспериментальных исследований.

Исследования процесса гидратации проводили в лабораторных условиях на экспериментальной установке (рисунок 5).

Рабочий процесс исследуемой установки для выведения кормовых фосфолипидов (рисунок 6) протекает следующим образом. При помощи пульта управления 11 запускается в работу электродвигатель 5, установленный на раме 4. Неочищенное масло из емкости 1 с гидратирующим раствором из емкости 2 по трубопроводу 3 поступает в шестеренчатый насос 6, где происходит перемешивание, далее по трубопроводу высокого давления 9 в кавитатор 12. Смесь с большой скоростью выходит из сопла и ударяется об отражатель. Масляно-растворная эмульсия из кавитатора попадает в гущеуловитель 13 через воздушную прослойку, в результате чего полученная эмульсия, не подвергается более кавитационному воздействию и образующиеся хлопья фосфолипидов не будут разрушаться. Крупные хлопья оседают быстрее, чем мелкие, поэтому процесс осаждения интенсифицируется.

Таким образом, происходит избирательная обработка смеси масла и гидратирующего раствора в малом объеме в кавитаторе, и отсутствие такой обработки в гущеуловителе.

Рисунок 5 – Общий вид экспериментальной установки для

выведения фосфолипидов:

1 – рама; 2 – емкость для гидратирующего раствора; 3 – трубопровод; 4 – регулировочный вентиль для подачи раствора; 5 – шестеренчатый насос НШ-10; 6 – электродвигатель; 7 – муфта; 8 – вентиль для регулировки давления в системе; 9 – маслопровод высокого давления; 10 – кавитатор; 11 – пульт управления; 12 – манометр; 13 – предохранительный клапан; 14 – измерительный комплект К-50.

  Схема экспериментальной-31

Рисунок 6 – Схема экспериментальной установки

Величину рабочего давления в системе определяли манометром МП 4 –УУ2 (позиция 8, рисунок 6). Регистрацию мощности, потребляемой электродвигателем, осуществляли измерительным комплектом К - 50 (позиция 10, рисунок 6).

В гущеуловителе 13 масляно-растворная эмульсия окончательно гидратируется, отстаивается и осадок фосфолипидов удаляется через нижний патрубок гущеуловителя, а очищенное масло сливается через верхний патрубок.

Основным исследуемым объектом в процессе эксперимента является кавитатор (рисунок 7), состоящий из цилиндрического корпуса 1, в котором с одной стороны установлено коническое сопло 3, закрепленное на неподвижном переходнике 2. Против среза сопла установлен отражатель 4 на регулировочной шпильке 5.

  Кавитатор На основе анализа-32

Рисунок 7 – Кавитатор

На основе анализа литературных источников и собственных исследованиях, было выделено 8 факторов, оказывающих наибольшее влияние на протекание процесса гидратации подсолнечного масла: температура масла; давление масла; диаметр сопла; расстояние от сопла до отражателя; тип отражателя; количество вводимого гидратирующего раствора; содержание соли в гидратирующем растворе; время отстаивания смеси.

Для проведения отсеивающего эксперимента воспользовались планами Плакетта-Бермана. После обработки результатов три фактора оказались незначимыми.

В качестве критериев оптимизации процесса гидратации были приняты:

- количество выведенных фосфолипидов МФ, г/л;

- массовая доля влаги и летучих веществ МВ, %;

- кислотное число подсолнечного масла К, мг КОН/г.

Для проведения основного эксперимента были приняты следующие факторы с уровнями варьирования (таблица 1). Для проведения опытов данного блока экспериментальных исследований была использована методика планирования эксперимента с применением симметричного композиционного плана типа В5 (близкого к D -оптимальному плану для пяти факторов), позволяющего получить полиномиальные уравнения регрессии второго порядка для каждого критерия оптимизации.

Таблица 1 - Факторы и интервалы варьирования основного эксперимента

Обозначение Наименование фактора Значения
-1 0 +1
Х1 Давление масла, p, МПа 0,5 1,0 1,5
Х2 Диаметр сопла, d, мм 1,5 2,25 3,0
Х3 Расстояние от сопла до отражателя, l,мм 30 40 50
Х4 Количество вводимого гидратирующего раствора, МР, % 1 2 3
Х5 Содержание соли в гидратирующем растворе, МС, % 0 1 2

Опыты проводили с трехкратной повторностью, порядок их проведения определялся рандомизацией. Статистическая обработка опытных данных, анализ полученных результатов проводили с использованием прикладных компьютерных программ Statistica, Excel, MathCAD.

Для проведения экспериментов использовали баковые отстои масла полученного в миницехе, с показателями (по ГОСТ1129-93): кислотное число – 1,54 мг КОН/г, массовая доля влаги и летучих веществ – 0,16 %, цветное число – 25 мг йода, степень прозрачности – 40 фем.

Для определения массовой доли влаги и летучих веществ и кислотного числа масла, проводили химический анализ в лаборатории НИИ химизации Алтайского ГАУ.

Четвертая глава посвящена анализу результатов проведенных экспериментальных исследований.

В ней изложены результаты исследования наиболее значимых факторов, влияющих на процесс гидратации подсолнечного масла и получены математические модели, описывающие данный процесс.

После математической обработки результатов основного эксперимента получили следующие уравнения регрессии в кодированной форме:

для определения количества выведенных фосфолипидов (г/л):

(19)

для определения массовой доли влаги и летучих веществ (%):

(20)

для определения кислотного числа подсолнечного масла (мг КОН/г):

(21)

Проверка регрессионных моделей (19), (20), (21) на адекватность осуществлялась по критерию Фишера при 5% - ом уровне значимости. В случае если , то полученная полиномиальная модель уравнения регрессии адекватно описывает изучаемую закономерность.

Для определения точек экстремумов функций МФ, МВ,, К оптимальные значения факторов определяли посредством анализа двумерных сечений поверхности отклика (рисунки 8-10).

Из анализа сечений поверхностей отклика были выявлены следующие закономерности:

В исследованной области факторного пространства конструктивные параметры установки значительно влияют на массу выведенных фосфолипидов МФ (рисунок 8).

При увеличении давления р масла необходимо одновременно с этим увеличивать как диаметр сопла d, так и расстояние l от сопла до отражателя. Этообъясняется тем, что повышение давления и увеличение диаметра приводит к повышению скорости истечения смеси из сопла и давлению схлопывания пузырьков, в результате чего происходит увеличение числа кавитации. Это способствует получению более качественной эмульсии.

Массовая доля влаги и летучих веществ МВ, (рисунок 9) значительно снижается при увеличении давления масла р и диаметра сопла d. Подобный характер поведения выходного параметра наблюдается и при уменьшении количества вводимого раствора Мр.

Снижение кислотного числа К (рисунок 10) происходит с увеличением количества вводимого в масло гидратирующего раствора Мр. Такой характер поведения функции К сохраняется вне зависимости от значений других факторов.

При решении многокритериальной задачи был применен метод главного критерия. В качестве последнего был выбран МФ - количество выведенных

а б

Рисунок 8 – Двумерное сечение поверхности отклика МФ:

а) МФ = f(Х1, Х2) при Х3 = Х4 = Х5 = 0; б) МФ = f(Х1, Х3) при Х2 =0, Х4 = Х5 = 1

Рисунок 9 – Двумерное сечение поверхностей отклика МВ:

а) МВ = f(Х1, Х2) при Х3 = Х4 = Х5 =1; б) МВ = f(Х3, Х4) при Х1 = 0, Х2 =0,5, Х5 = 1;





Рисунок 10 – Двумерное сечение поверхности отклика К:

а) МК = f(Х1, Х4) при Х2 = Х3 = 1, Х5 = -1; б) МК = f(Х2, Х5) при Х1 = Х3 = 1, Х4 =0;

фосфолипидов. Другие выходные параметры были переведены в ограничение. Условно-оптимальными будут следующие значения факторов: Х1 = 1,1 - давление масла (р = 1,65 МПа); Х2 = 1,2 - диаметр сопла (d = 3,6 мм); Х3 = 0 - расстояние от сопла до отражателя (l = 40 мм); Х4 = 1,2 - количество вводимого гидратирующего раствора (Мр = 3,6 %); Х5 = -1 - содержание соли в гидратирующем растворе (Мс = 0 %).

При этих значениях из одного литра подсолнечного масла выделяется - 205 г фосфолипидов, массовая доля влаги и летучих веществ - 0,019 %, кислотное число подсолнечного масла - 1,36 мг КОН/г.

В пятой главе «Экономическая эффективность использования результатов исследования» произведен расчет экономической эффективности применения данной научно-исследовательской работы. Полученные результаты показывают, что использование установки для выведения кормовых фосфолипидов предлагаемым способом кавитационной гидратации экономически выгодно. Снижены энергоемкость в 7,1 раза, металлоемкость в 3,4 раза по сравнению с известным (классическим) способом гидратации ООО «НИИ ТехМаш». Годовая прибыль при производительности установки - 360 л/ч, с потребляемой мощностью - 1,5кВт/ч, составит от 29,7 до 118,8 тыс. руб. в зависимости от содержания фосфолипидов в масле (в ценах 2009 года). Экономический эффект от сезонного применения способа и установки на очистке подсолнечного масла в ООО «Электротехника-Сибирь», составил 86,9 тыс. руб. (в ценах 2008 г.)

Общие выводы

1. Известные способы выведения фосфолипидов основаны на смешивании растительных масел с водой или обработки их паром, что реализуется на тихоходном металлоемком оборудовании, при этом очищенное масло необходимо досушивать (для удаления остатков гидратирующего раствора) на вакуумных установках.

Предложен способ и устройство для проведения кавитационной обработки подсолнечного масла (патент РФ № 2288948) с выведением кормовых фосфолипидов. Данный способ не требует сложного аппаратурного оформления, что обусловлено созданием условий для получения масляно-водной эмульсии и интенсификации на этой основе реакции гидратации.

2. В результате исследования процесса выведения кормовых фосфолипидов предложена математическая модель процесса кавитационной гидратации подсолнечного масла, учитывающая механизм образования кавитации и размер получаемых частиц масляно-водной эмульсии.

Показано, что наименьшего размера частиц эмульсии можно достичь при давлении смеси жидкостей на входе в кавитатор около 1,50 МПа. Требуемая скорость течения жидкости в трубопроводах для образования турбулентности составляет примерно 9,4 м/с.

3. Определены рациональные значения конструктивных параметров установки, позволяющие выводить максимальное количество фосфолипидов, с минимальной массовой долей влаги, летучих веществ и минимальным кислотным числом: давление масла в системе р = 1,50…1,65 МПа; диаметр сопла d = 3,4…3,6 мм; расстояние от сопла до отражателя l = 40…43 мм; количество вводимого раствора Мр = 3,0…3,6 %; содержание соли в растворе Мс = 0 %. При этом применение предлагаемого способа и установки позволяет получать подсолнечное масло высшего сорта.

4. Установлено, что предлагаемый нами способ позволяет в 7,1 раза снизить энергоемкость и в 3,4 раза - металлоемкость при одинаковой производительности оборудования, в сопоставлении с известным (классическим) способом выведения фосфолипидов, реализованном в оборудовании ООО «НИИ ТехМаш».

5. Определено, что расчётная годовая прибыль при производительности установки - 360 л/ч, с потребляемой мощностью - 1,5кВт/ч, составляет от 29,7 до 118,8 тыс. руб. в зависимости от содержания фосфолипидов в исходном масле (в ценах 2009 года).

Основные положения диссертации опубликованы в следующих

работах:

Публикации в изданиях, рекомендованных ВАК

1. Федоренко И.Я. Теория смешения гетерогенных систем / И.Я. Федоренко, А.Н. Кулинич, И.Ю. Александров.// Хранение и переработка сельхоз сырья, 2000. №10. С. 16-18.

2. Федоренко И.Я. Кинетика смешения гетерогенных систем / И.Я. Федоренко, И.Ю. Александров А.Н. Кулинич. // Аграрная наука. 2001. №8. С. 25-26.

3. Федоренко И.Я. Механизм образования эмульсии в кавитаторе установки для гидратации подсолнечного масла / И.Я. Федоренко, И.Ю. Александров, И.А. Наумов // Вестник Алтайского государственного аграрного университета. 2009. № 11(61). С. 63–66.

Публикации в описаниях на изобретения, сборниках научных трудов

4. Патент Российской Федерации № 2288948 С1 МПК, С 11 В 3/16. Способ очистки растительного масла и линия для его осуществления / И.Я. Федоренко, И.Ю. Александров. – № 2005113650/13; заявл. 04.05.05; опуб. 10.12.06, Бюл. № 34. – 5 с.: - ил.

5. Федоренко И.Я. Проблемы очистки подсолнечного масла, получаемого в цехах малой мощности / И.Я. Федоренко, И.Ю. Александров. // Механизация технологических процессов в с.-х. и перерабатывающей промышленности: сб. науч. трудов. – Барнаул: Изд-во АГАУ, 1997. С. 105-108.

6. Александров И. Ю. О существенных формах процесса выведения кормовых фосфолипидов методом гидратации / И. Ю. Александров // Совершенствование технологий и технических средств в АПК: сб. науч. трудов. – Барнаул: Изд-во АГАУ,1999. С. 44–46.

7. Александров И. Ю. Влияние процесса выведения кормовых фосфолипидов на очистку подсолнечного масла, получаемого в мини-цехах / И. Ю. Александров // Молодежь – Барнаулу: тезисы докладов второй городской межвузовской научно-практической конференции, посвященной 270-летию г. Барнаула. – Барнаул: Изд-во БЮИ МВД РФ, 2000.С. 236-238.

8. Федоренко И.Я. Совершенствование технологии выведения кормовых фосфолипидов и очистки подсолнечного масла, получаемого в мини-цехах / И.Я. Федоренко, И.Ю. Александров // Развитие села и социальная политика в условиях рыночной экономики: Материалы Международной научно-практической конференции, посвященной 70-летию МГАУ. Часть 2. – М.: МГАУ имени В.П. Горячкина, 2000. С. 148 - 149.

9. Александров И. Ю. Обоснование конструктивных параметров установки для выведения кормовых фосфолипидов из подсолнечного масла / И.Ю. Александров // Вестник Алтайского государственного аграрного университета. 2003. № 1(9). С. 65–67.

ЛР №020648 от 16 декабря 1997 г._______________

Подписано в печать.11.2009 г. Формат 6084/16. Бумага для множительных аппаратов. Печать ризографная. Гарнитура «Times New Roman». Усл. печ. л. 1,0. Тираж 130 экз. Заказ № ___.

Издательство АГАУ,

656049, г. Барнаул, пр. Красноармейский, 98,

тел. 62-84-26



Pages:     | 1 ||
 

Похожие работы:







 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.