авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:     | 1 || 3 | 4 |

Формирование автономных систем электроснабжения сельскохозяйственных объектов на основе возобновляемых источников энергии

-- [ Страница 2 ] --

Интенсивность солнечного излучения на наклонную площадку зависит от азимутального угла и угла наклона. Обычно параметры ориентации выбираются исходя из максимального поступления за световой период энергии Солнца на площадку. Учитывая, что прозрачность атмосферы в течение суток изменяется (например, в Ростовской области атмосфера более прозрачна в первой половине дня, а во второй появляется облачность), ориентация солнечного приемника на юг не оптимальна. В этой связи была решена задача по оптимальной ориентации фиксированного солнечного коллектора по максимуму поступления на него энергии Солнца.

Плотность солнечного излучения, поступающего на солнечный коллектор, определяется по формуле:

Nк = Nгi[ctgi cos(сi - ) sin + cos], (3)

где NK – интенсивность солнечного излучения на коллектор, Вт/м2; NГi - интенсивность солнечного излучения на горизонтальную площадку в i-тый промежуток времени, Вт/м2; i – угол солнцестояния в i-тый промежуток времени, град.; Сi – азимутальный угол Солнца в i-тый промежуток времени, град.; – азимутальный угол коллектора, град.; – угол наклона коллектора, град.

Дифференцируя (3) последовательно по d и d, получаем выражения для определения оптимальных параметров ориентации фиксированного солнечного коллектора:

; . (4)

В соответствии с изложенной методикой в качестве примера, на основании статис­тических данных ГМО поселка Гигант Ростовс­кой области, рассчитаны параметры ориентации солнечного кол­лектора. В результате расчетов получено, что при круглогодичной работе азимутный угол должен составлять – 12,5 град. угол наклона к горизонтальной поверхности должен составлять 41,6 град.

Оптимально ориентированный коллектор принимает энергии солнечного излучения на 7% больше. Однако по сравнению со следящей системой разница в поступлении энергии остается значительной – следящий за Солнцем преобразователь воспринимает энергии солнечного излучения больше в 1,3 раза в зимние месяцы и в 1,7 раза в летние месяцы.

Ветер, так же как и солнечное излучение, характеризуется случайными параметрами, но является еще менее периодичным источником возобновляемой энергии. В метеорологических справочниках приводятся данные о распределении скорости ветра по месяцам года в течение суток, и об общем количестве дней в году ветра с определенной скоростью. Данных о продолжительности непрерывных периодов с той или иной скоростью в метеорологических справочниках не приводится.

Методик, позволяющих определять продолжительность штилевых и энергетических периодов, не обнаружено. Очевидно, это объясняется тем, что для сетевого использования ветроэлектростанций достаточно знать общую продолжительность этих периодов, которая определяет общую энергетическую способность использования энергии ветра.

Для расчета автономных (изолированных) ветроэлектростанций разрабатывались различные математические модели динамики ветра, которые, как и для солнечного излучения, либо содержали поправочные эмпирические коэффициенты, требующие проведения дополнительных статистических наблюдений, либо (в силу своей целенаправленности) позволяли получить характеристики типичного (усредненного) дня в отношении ветра. Вместе с тем, в метрологических справочниках достаточно данных для получения необходимых параметров (продолжительности непрерывных энергетических и штилевых периодов). Причем получить такие параметры можно путем расчетов и машинного моделирования, что значительно сократит трудоемкость их определения.



Энергетические и штилевые периоды являются случайными величинами, поэтому имеет смысл говорить только о вероятности продолжительности этих периодов. Для получения статистических параметров (математическое ожидание и стандартное отклонение) было проведено на основании метеоданных машинное моделирование чередования скорости ветра в течение года. Учитывая, что на продолжительность энергетического и штилевого периодов оказывают влияние многочисленные факторы, независимые друг от друга, а каждый фактор оказывает незначительное влияние в сравнении с совокупным влиянием всех факторов, была принята гипотеза, что энергетический и штилевой периоды распределены нормально. Проверка гипотезы проводилась по критерию Пирсона. В качестве исходных данных использовался статистический материал Государственных метеорологических обсерваторий, расположенных на территории Южного Федерального округа.

Так как в метеорологических справочниках не приводятся данные о продолжительности периодов с той или иной скоростью ветра, было проведено моделирование графиков по методу Монте-Карло. По полученным графикам определялись продолжительности энергетического и штилевого периодов и распределение вероятностей этих случайных величин для различных скоростей ветра. Проверка гипотезы о законе распределения проводилась для каждой скорости ветра. Результаты проверки приведены в таблице 1.

Таблица 1 – Результаты проверки гипотезы о нормальном

распределении энергетических и штилевых периодов

Параметры Период (сут) со скоростью ветра
>4м/с >6м/с >12м/с <4м/с <6м/с <12м/с
Расчетное значение 2 Нормированное значение 2 для уровня значимости 0,05 Математическое ожидание, сут Стандартное отклонение, сут 17,06 18,3 52,1 17,2 3,31 9,5 24,0 7,8 2,76 9,5 2,4 0,8 1,49 9,5 1,5 0,5 4,31 9,5 2,1 0,6 8,07 14,1 18,0 8,4

Как показала проверка, нет оснований отвергать нулевую гипотезу о нормальном законе распределения вероятностей энергетических и штилевых периодов.

По полученным данным были построены грвфики зависимости штилевого и энергетического периодов от скорости ветра (рисунок 3).

Для практического использования полученных функций при оптимизации параметров автономной системы электроснабжения удаленного объекта они были аппроксимированы уравнениями регрессии.

tA=0,0014v5–0,0622v4+1,0067 v3–6,759 v2+19,677 v–18,37 (5)

tЭ=0,003v4–0,1365v3+2,2506 v2–16,462v + 49,623 (6)

1 – штилевой период, 2 – энергетический период

Рисунок 3 – Продолжительность энергетических и штилевых периодов, наступающих с вероят

ностью 0,95

В главе 4 «Анализ преобразователей и аккумуляторов энергии» Показано, что концентрирование солнечного излучения и слежение за Солнцем позволяют увеличить эффективность его использования, что эквивалентно повышению к.п.д. ФЭП. Применение концентрированного солнечного излучения позволяет увеличить к.п.д. батареи фотоэлектрических преобразователей с 12 – 14% до 15 – 18% в коммерческих энергоустановках. В лабораторных энергоустановках на фотоэлектрических преобразователях этот показатель уже в настоящее время превышает 20%.

Принцип слежения зависит от наличия и типа концентратора. При отсутствии концентраторов или при использовании простейших концентраторов, система слежения должна иметь высокую точность наведения и обычно выполняется в функции интенсивности солнечного излучения.

Концентраторы второго порядка (параболические фоконы или фоклины) позволяют собирать лучи, попадающие во входную зону под углом до 45 градусов и более. Это, во-первых, позволяет использовать не только прямое, но и часть рассеянного солнечного излучения, а во-вторых, угол наведения при суточном ходе Солнца можно изменять только два раза в сутки. Такие системы слежения могут работать в функции времени и являются более простыми и более дешевыми.

Таким образом, существует два основных альтернативных варианта автономных солнечных электростанций – отсутствие или простые концентраторы солнечного излучения в сочетании с системой слежения, требующей значительной энергии на привод, или сложные концентраторы в сочетании с простой и экономичной системой слежения. При этом следует учитывать, что в параболических фоконах и фоклинах при концентрации косых лучей в плоскости фотоэлектрических преобразователей плотность облучения может быть не равномерна, что снижает к.п.д. ФЭП.

Для установления параметров концентрированного солнечного излучения были проведены экспериментальные исследования, в ходе которых удалось получить зависимость интенсивности на выходе концентратора от угла рассогласования (рисунок 4).

  Экспериментальная-5

Рисунок 4 – Экспериментальная зависимость интенсивности

солнечного излучения на выходе концентратора (угол раскрытия 20о)

Из полученного графика следует, что концентрация прямого солнечного излучения остается практически постоянной при угле разориентации до 5 градусов. При дальнейшей разориентации концентратора, интенсивность солнечного излучения на его выходе уменьшалась, и при угле разориентации равном 17 стала равной естественной интенсивности солнечного излучения. Такой угол позволяет использовать концентратор в утренние и вечерние часы.

Получив подтверждение того, что параболоцилиндрический фокон способен собирать лучи, попадающие в него под некоторым углом, экспериментально была проверена эффективность фокона при пасмурной погоде, то есть, при рассеянном излучении (рисунок 5). В результате эксперимента установлено, что при пасмурной погоде применение концентратора, направленного на место положения Солнца (диск Солнца скрыт облачностью), позволяет увеличить снимаемую мощность в шесть раз. Использование оптимально фиксированного концентратора в этом же случае обеспечивает увеличение мощности модуля фотоэлектрического преобразователя в два раза, но при этом исключается необходимость в системе слежения и в дополнительных расходах энергии на ее привод.

1 – следящий фокон, 2 – оптимально фиксированный ФЭП с концентратором, 3 – оптимально фиксированный ФЭП без концентратора.

Рисунок 5 – Мощность фотоэлектрического модуля при рассеянной

облученности (RН = 10 Ом)

При ясной погоде (рисунок 6) и при низкой освещенности в утренние и вечерние часы применение оптимально фиксированного концентратора позволило увеличить мощность, снимаемую с фотоэлектрических преобразователей в 5 – 8 раз, то есть получать мощность равную при работе ФЭП в условиях допустимой освещенности более 350 Вт/м2.

1 – фиксированный фокон имеет оптимальные параметры ориентации, 2 – фокон направлен вертикально вверх, 3 – оптимально фиксированный ФЭП без концентратора.

Рисунок 6 – Мощность фотоэлектрического модуля (RН = 10 Ом)

При достаточно большой интенсивности солнечного излучения фотоэлектрический преобразователь под оптимально фиксированным концентратором перегревается и становится неработоспособным.

Вертикально фиксированный концентратор в период солнечного сияния не дает существенного увеличения мощности, снимаемой с фотоэлектрического преобразователя в период недостаточной освещенности. Это объясняется взаимной компенсацией концентрации и затененности модуля. При достаточной интенсивности солнечного излучения более выгодно использовать фиксированный модуль фотоэлектрических преобразователей, имеющий оптимальные параметры ориентации, без концентраторов.

Таким образом, параболоцилиндрические концентраторы эффективны при низкой освещенности (до 200 Вт/м2) и пасмурной погоде.

Энергия ветра преобразуется в электроэнергию в ветроэнергетических установках (ВУ). Ветроколесо преобразует поступательное движение во вращательное, а непосредственно преобразование энергии происходит в генераторе. На работу синхронных генераторов могут отрицательно влиять порывы и провалы ветра.

Учитывая, что вращающий момент ветроколеса должен преодолевать момент сопротивления со стороны генератора и динамический момент, который действует только при , то есть, только при изменении частоты вращения, было получено уравнение, связывающее время разгона, динамический момент и параметры ветроколеса:





, (7)

где R – радиус ветроколеса, м, Z – быстроходность ветроколеса, J - момент инерции ветроустановки, кг.м2.

После интегрирования (8), получаем:

, (8)

где – коэффициент увеличения скорости ветра при порыве (провале).

Анализируя полученное решение, можно сделать следующее заключение. Для увеличения времени возмущения частоты вращения при порывах (провалах) ветра до предельно допустимого значения необходимо не только увеличивать момент инерции ветроэнергетической установки и увеличивать номинальную частоту его вращения (что тривиально), но и уменьшать радиус ветроколеса и рабочую скорость ветра.

На рисунке 7 представлен график зависимости времени разгона ветроэнергетической установки от величины порыва ветра. Как следует из приведенного графика, время разгона ветроколеса до предельно допустимой частоты вращения для ВУ мощностью до 10 кВт, рассчитанных на рабочую скорость ветра 5,5 м/с, не меньше 10 секунд. Этого времени достаточно для поворота лопастей ветроколеса и уменьшения мощности воздействующего на нее ветрового потока.

Как известно, ветроэнергетические установки пропеллерного типа способны вырабатывать электроэнергию с требуемой частотой э.д.с. только при скорости ветра не меньше рабочей. В остальные периоды используется либо резервный источник напряжения, либо запасенная заранее (в энергетические периоды) энергия.

1 – J = 10 кг·м2, Н = 105 с – 1; 2 – J = 20 кг.м2, Н = 105 с – 1;

3 – J = 10 кг·м2, Н = 157 с – 1; 1 – J = 20 кг.м2, Н = 157 с – 1;

Рисунок 7 – Зависимость времени разгона ветроколеса от порыва ветра

при рабочей скорости ветра 5,5 м/с

Частота вращения ветроустановок роторного типа увеличивается пропорционально скорости ветра. Это создает определенные трудности при применении синхронного генератора в роторных ветроустановках. Однако простота ветроустановок роторного типа и более лучшие эксплуатационные условия использования электросилового оборудования вынуждают искать пути их использования для электроснабжения. На рисунке 8 показана функциональная схема разработанной ветроэнергетической установки, которая позволяет поддерживать частоту вращения генератора стабильной.

Установка работает следующим образом. При скорости ветра, более рабочей скорости, статор машины постоянного тока (МПТ) вращается с частотой вращения большей, чем номинальная частота вращения синхронного генератора. Но так как синхронный генератор приводится во вращение от якоря машины постоянного тока, то путем регулирования тока возбуждения МПТ устанавливается такой тормозной момент, при котором она работает в режиме генератора с частотой вращения якоря равной номинальной частоте вращения синхронного генератора.

При уменьшении скорости ветра вплоть до рабочей скорости уменьшается и частота вращения якоря машины постоянного тока относительно статора с таким расчетом, чтобы частота вращения синхронного генератора оставалась номинальной. При этом процесс регулирования качественно сохраняется.

При уменьшении скорости ветра ниже рабочей скорости, происходит реверсирование полюсов якорной обмотки, и машина постоянного тока переводится в двигательный режим. При этом поддержание частоты вращения якоря машины постоянного тока и ротора синхронного генератора производится за счет регулирования тока обмотки возбуждения МПТ.

1 – ветроколесо, 2 – повышающий редуктор, 3 – инерционный аккумулятор, 4 – обгонная муфта, 5 – понижающий редуктор, 6 – статор машины постоянного тока, 7 – якорь машины постоянного тока, 8 – синхронный генератор.

Рисунок 8 – Функциональная схема ветроэнергетической установки

роторного типа

Такая схема позволяет работать ветроустановке не только на рабочих скоростях ветра, но и на низших скоростях и, что особенно важно, на высших скоростях ветра при обеспечении требуемых значений частоты и напряжения генератора. По проведенным расчетам время качественного использования ветроэнергетической установки увеличивается с 10 – 35% до 60 – 70%.

Анализ аккумуляторов энергии показал, что, исходя из принципа осуществимости, рекомендуется в автономной системе электроснабжения фермерских хозяйств использовать следующие аккумуляторы энергии: механические в виде маховика – для сглаживания порывов и провалов ветра; электрохимические – для накопления электроэнергии во время работы ветроэнергетической установки и солнечной электростанции, и отдачи в нерабочие периоды; тепловые с фазовым переходом – для накопления тепла, получаемого от солнечного излучения, и последующей отдачи.

В главе 5 «методология формирования автономных систем электроснабжения на основе возобновляемых источников энергии» приводится разработанная общая методология формирования автономных систем электроснабжения на основе ВИЭ и методы оптимизации их параметров.

Особенностью автономных электростанций на основе возобновляемых источников энергии является неуправляемость поступающих энергетических потоков. Это вынуждает для обеспечения достаточного уровня надежности электроснабжения резервировать преобразователи энергии возобновляемых источников или применять аккумулирование энергии. Параметры составных частей автономных электростанций (собственно преобразователи энергии возобновляемых источников, резервные топливные электростанции и аккумуляторы энергии) находятся в противоречии друг с другом, что требует оптимизации параметров, обеспечивающих наиболее высокий уровень конкурентоспособности автономных электростанций на основе возобновляемых источников энергии.

Общими требованиями к автономным электростанциям, обеспечивающими их конкурентоспособность, являются следующие:



Pages:     | 1 || 3 | 4 |
 

Похожие работы:










 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.