авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:     | 1 || 3 | 4 |   ...   | 5 |

ОБОСНОВАНИЕ ПАРАМЕТРОВ МАЛОГАБАРИТНЫХ ТРАНСПОРТНЫХ СРЕДСТВ СЕЛЬСКОХОЗЯЙСТВЕННОГО НАЗНАЧЕНИЯ С ШИРОКИМИ ФУНКЦИОНАЛЬНЫМИ

-- [ Страница 2 ] --

Обеспечение транспортными средствами (грузовыми автомобилями) КФХ остается низкой – в среднем по стране 1 автомобиль на два хозяйства, при неравномерном распределении по регионам (Тамбовская обл. – 0,9 автомобиля на 1 КФХ, из них полностью самортизированы – 0,33; Курская обл. – 0,6 и 0,37, соответственно). Применение изношенной техники увеличивает себестоимость продукции, а значительные ресурсы приходится направлять на ремонт. Сегодня важно понимать, что в области транспортного обеспечения КФХ и ЛПХ необходимо не только наращивание транспортных мощностей, но и рост годовой загрузки и выработки транспортных средств по сравнению с затратами на их приобретение и эксплуатацию. Это невозможно реализовать без создания и производства грузопассажирских и грузовых автомобилей высокой проходимости и различной грузоподъемности, приспособленных к условиям круглогодичной эксплуатации на селе. Иными словами, для КФХ и ЛПХ нужны именно малогабаритные малотоннажные транспортные средства высокой проходимости, грузоподъемностью от 300 кг (грузоподъемность большинства легковых автомобилей) - до 1,0…2,0 т. Верхний предел грузоподъемности в большей степени востребован в КФХ с земельными угодьями около или более 100 га и товарными ЛПХ. Для трети КФХ (площадь обрабатываемых угодий до 60 га – около 30% хозяйств) и для подавляющего большинства ЛПХ (площадь обрабатываемых угодий 0,8 га – около 50% хозяйств) грузоподъемность МТС можно ограничить 800 кг. С другой стороны, низкий уровень механизации в КФХ и, особенно, ЛПХ подтверждает необходимость создания МТС с дополнительными функциональными возможностями для выполнения вспомогательных операций на сельском подворье.

В работах Л.Е. Агеева, И.А. Афанасьева, А.А. Бакаева, В.Ф. Ванчукевича, Д.П. Великанова, А.В. Вельможина, В.А. Гобермана, Н.Е. Евтушенкова, Ю.В. Завадского, Ф.С. Завалишина, А.А. Зангиева, В.А. Зязева, А.Ю. Измайлова, Л.Ф. Кормакова, А.Г. Левшина, Н.И. Левыкина, С.К. Миронюка, Б.С. Окнина, К.-Ю. Рихтера, Р.Ш. Хабатова, М.С. Ходоша, С.М. Цукерберга, Е.П. Шилова и многих других исследованы вопросы оптимизации сочетания производительности технологической машины сельскохозяйственного назначения, компенсаторов в виде различных емкостей, особенности организации грузопотоков и грузоперевозок при различной длине ездки и урожайности убираемой культуры, производительности грузовых транспортных средств и затрат на перевозку продукции. Однако для оптимизации параметров и показателей, которые были бы использованы при разработке типажа транспортных средств в дальнейшем, целесообразно использовать графо-аналитический способ ускоренного качественного сравнения или принцип качественного сравнения. Этот принцип подразумевает сравнение производительности и себестоимости минимум двух автомобилей сопоставимого класса и грузоподъемности требует «адаптации» к специфическим условиям эксплуатации. При этом важное значение приобретает такой параметр как техническая скорость, так как автомобили высокой проходимости в условиях бездорожья сохраняют подвижность и обеспечивают большие значения скоростей. По производительности сравнивают автомобили (индексы 1 и 2), при работе которых может быть получена различная производительность в зависимости от соотношений эксплуатационных показателей и изменения одного из них во всем реальном диапазоне. Сравнение ведется по «равноценному» значению изменяющегося показателя. При этом - производительность одного автомобиля в выполненных тонно-километрах за один автомобиль-час пребывания на линии:



, ткм/авт-ч. (1)

В этой формуле - грузоподъемность автомобиля, т;

- коэффициент динамического использования грузоподъемности, определяющий отношение количества фактически выполненных тонно-километров к количеству тонно-километров, которые могли быть выполнены при полном использовании грузоподъемности автомобиля. Здесь - фактически перевезенный груз за одну ездку, т, а - расстояние перевозки, км; - время погрузки-разгрузки, ч; - длина ездки с грузом, км; - коэффициент использования пробега при производительности в тонно-километрах и определяется как отношение пробега автомобиля с грузом к общему пробегу (к сумме пробегов с грузом и без груза).

При изменении коэффициента использования пробега из формулы (1) для обоих автомобилей определяем «равноценный» , при котором их производительности равны. Принимая, что средняя длина ездки с грузом для обоих автомобилей одинакова, а остальные показатели в общем случае разные, получаем

.

Решая это равенство относительно величины , после соответствующих преобразований получим

. (2)

Так как производительности сравниваемых автомобилей равны, то при увеличении против найденной величины один из автомобилей будет иметь большую производительность. Если уменьшается, уже другой автомобиль приобретает преимущество по производительности (рис. 1, а).

Кривые производительности пересекаются в первом квадранте в том случае, когда имеем положительное и конечное значение при условии:

и

или

и .

При кривые 1 и 2 не пересекаются и =0. Взаимное положение кривых в этом случае показано на рис. 1, б, где точки А и Б соответствуют величинам максимальной производительности при =1.

Аналогично исследуется влияние изменения технической скорости, времени погрузочно-разгрузочных работ и длины ездки с грузом, при которых производительность автомобилей одинакова. Общие формулы можно упростить при равенстве каких-либо входящих в них величин. Сравнение автомобилей по себестоимости перевозок происходит аналогично сравнению по производительности путем нахождения «равноценного» значения показателя, при котором себестоимости одинаковы (рис. 2). Так как одной из базовых модификаций семейства МТС намечается транспортное средство – самосвал, то определенный интерес представляет сравнение показателей бортового автомобиля и автомобиля-самосвала. Очевидно, что применение автомобиля-самосвала сокращает - машина может совершить больше ездок, а - возрасти. Уменьшение при этом грузоподъемности из-за дополнительного оборудования приведет к снижению и возникает необходимость оценить, в каких случаях применение автомобилей-самосвалов может быть более выгодным (рис. 3).

Для обеспечения сельхозпроизводителей транспортными средствами ранее были разработаны опытные образцы разнообразных машин. Например, в виде 1,5 тонных фургонов НАМИ-0267 (рис. 4). Кроме того, было разработано семейство транспортно-технологических автомобилей НАМИ-0342 типа 4х4 грузоподъемностью 0,5 т (рис. 5). Эти автомобили могли работать в сельском хозяйстве, они были оборудованы передним и задним валами отбора мощности, специальными устройствами для агрегатирования разного рода технологического оборудования. Автомобиль по своим параметрам соответствовал тракторам класса тяги 0,2…0,6 т и мог работать со шлейфом навесных сельскохозяйственных орудий от тракторов Т-18 и Т-25.

Рис. 1, а) Производительность автомобилей 1 и 2 при наличии «равноценного» коэффициента Рис. 1, б) Производительность автомобилей 1 и 2 при отсутствии «равноценного» коэффициента Рис. 2. Себестоимость перевозок автомобилями 1 и 2 в зависимости от использования пробег
Рис. 3. Себестоимость перевозок автомобилями 1 и 2 в зависимости от использования пробега  Автомобиль-фургон НАМИ-0267-36 Рис. 4. Автомобиль-фургон НАМИ-0267 грузоподъемностью 1,5 т.
Рис. 5. Транспортно-технологический автомобиль НАМИ-0342 грузоподъемностью 0,5 т. Рис. 6. Транспортно-технологический автопоезд КАЗ-4540.

В 70-х гг. ХХ века возникла необходимость разработки и организации производства транспортно-технологических автомобилей, способных круглогодично работать на грунтовых дорогах и в полевых условиях со специальными и специализированными прицепными средствами. Согласно расчетам, наиболее массовым должен был быть автопоезд с полной массой не более 24 т, в составе автомобиля-тягача с полной массой до 12 т и грузоподъемностью до 6 т, и двухосного прицепа грузоподъемностью до 5…6 т (рис. 6). Серийное производство семейства КАЗ-4540 было начато в 1984 году. Эксплуатация показала, что производительность транспортных работ в сельском хозяйстве возросла примерно в 2 раза при снижении расхода топлива и уменьшения вредного воздействия на окружающую среду.

Путем исследования научных основ создания грузовых автомобилей сельскохозяйственного назначения установлено, что одним из основных способов повышения эффективности транспортных процессов является применение грузовых автомобилей высокой проходимости, отличающихся вариантностью исполнения и комплектации (наличием модификаций); широким диапазоном регулирования скорости; шинами с регулируемым давлением воздуха; возможностью применения навесного оборудования и современными дизайнерскими решениями.

В третьей главе разработаны научные основы создания семейства МТС. Анализ подходов и реализованного опыта по созданию универсальных машин сельскохозяйственного назначения и мобильных энергетических средств (МЭС) показал, что попытки повторить путь создателей Унимог, равно как и перейти на широкомасштабное применение МЭС закончились неудачей. Однако создаваемое семейство МТС с широкими функциональными возможностями в виде автомобиля высокой проходимости, способного выполнить вспомогательные операции в КФХ, ЛПХ и сельском подворье - проще и дешевле для реализации идеи универсализации.

Изучение возможных аналогов иностранного производства и отечественного опыта позволяет заключить, что рыночная ниша транспортных средств с широкими функциональными возможностями для КФХ и ЛПХ грузоподъемностью до 2 т пустует, прямых аналогов таких машин нет, и годовая потребность отечественного рынка может составить до 30 тыс. штук в год. На этапе конструирования одним из направлений теоретических исследований является разработка математической модели динамики движения МТС по деформируемому грунту. Для нашего случая исследования к разрабатываемой математической модели можно сформулировать следующие основные требования: соответствие внешних воздействий в математической модели и условиям реальной эксплуатации; учет переменного характера сил сопротивления качению по мостам автомобиля из-за образования колеи при движении по деформируемым грунтам; возможность динамического анализа системы в частотном диапазоне, включающем все характерные режимы нагружения трансмиссии и подвески от дорожных неровностей (обычно, 0…40 Гц).





Была разработана нелинейная математическая модель МТС с колесной формулой 4х4, расчетная динамическая схема которой представлена на рис. 7.

Система дифференциальных уравнений, описывающая динамику движения МТС, имеет вид (3), где:

- - моменты инерций, соответственно, вращающихся масс двигателя; ведомой части сцепления; деталей первичного вала коробки передач и части вращающихся деталей, связанных с ним, приведенные к первичному валу; деталей вторичного вала коробки передач и части

 Расчетная динамическая схема МТС -40

Рис. 7. Расчетная динамическая схема МТС

(3)

вращающихся деталей, связанных с ним, приведенные к вторичному валу; вращающихся частей колесных дисков; колес и резинокордной оболочки шин переднего и заднего мостов автомобиля; переднего и заднего мостов, поворачивающихся под воздействием реактивных моментов; подрессоренной массы автомобиля, кг·м2;

- - подрессоренная масса автомобиля и неподрессоренные массы соответственно переднего и заднего мостов, кг;

- - суммарные крутильные жесткости, соответственно, демпфера крутильных колебаний; валов раздаточной коробки и карданных валов привода переднего и заднего мостов автомобиля; продольные и вертикальные жесткости рессор и шин переднего и заднего мостов автомобиля; суммарные крутильные жесткости резинокордной оболочки шин переднего и заднего мостов автомобиля; суммарные крутильные жесткости рессор при угловых колебаниях мостов в продольной плоскости,

Н·м·рад-1;

- - суммарные зазоры в соединениях деталей коробки передач, приведенных к первичному валу; редукторов переднего и заднего мостов автомобиля; в тягово-сцепном устройстве, соответственно, м;

- - общее передаточное число коробки передач и раздаточной коробки;

- - передаточное число главной передачи ведущих мостов;

- - радиусы качения колес ведущих мостов автомобиля, м;

- - координаты центра тяжести подрессоренной массы автомобиля, м;

- - угловые обобщенные координаты масс;

- - линейные обобщенные координаты соответствующих масс в вертикальном направлении, м;

- - линейные обобщенные координаты соответствующих масс в горизонтальном направлении, м;

- - высоты неровностей микропрофиля дороги, м;

- - ход рейки топливного насоса, м;

- - силы сопротивления, Н;

- - силы сухого трения, Н;

- - крутящий момент двигателя, Н·м;

- - момент сопротивления вращению валов трансмиссии, приведенный к валу двигателя, Н·м;

- - приведенная суммарная жесткость участка трансмиссии «раздаточная коробка – колесо»:

где - крутильные жесткости полуосей переднего и заднего мостов автомобиля, Н·м-1.

В последних трех уравнениях приведенной выше системы уравнений использована формула записи инерционных членов следующего вида (4):

. (4). . (5).

В случае постоянных значений соответствующих масс и моментов инерции их можно вынести за знак дифференцирования. Тогда форма записи инерционных членов будет аналогичной формы записи других уравнения системы. В случае переменных значений инерционных характеристик и получим (5). Это справедливо если МТС работает в технологической цепочке с машинами сельскохозяйственного назначения и загружается на ходу равномерно. Однако в большинстве случаев МТС не предназначена для транспортной технологии такого рода.

Аналогично известным математическим моделям динамики автомобиля система дифференциальных уравнений (3) в процессе моделирования различных режимов движения позволяет выделить режимы, когда: сцепление буксует, автомобиль начинает движение; сцепление заблокировано, автомобиль разгоняется и движется с постоянной скоростью; сцепление отключено, производится переключение передач. Система уравнений (3) описывает первый из перечисленных режимов движения. На втором режиме в упомянутой системе изменяются первые два уравнения:

. (6)

На третьем режиме изменяются первые четыре уравнения:

, (7)

где - момент трения синхронизатора.

На современном этапе развития транспортных средств для АПК на передний план выходят требования экологии земледелия и конструктивной безопасности. Поэтому для МТС локализация технических требований, предъявляемых к средствам механизации сельскохозяйственного назначения в объеме требований экологии земледелия - представляется обоснованной и достаточной. При этом исходим из того, что:

- технические требования к МТС могут быть локализованы в объеме требований по безопасности, предъявляемых машинам сельскохозяйственного назначения;

- перечень функциональных возможностей МТС определяется требованиями в той мере, в которой рассматриваемая функция может быть реализована в конкретной модификации;

- МТС является транспортным средством индивидуального и семейного пользования, что, со своей стороны, определяет перечень требований по активной и пассивной безопасности.

Синтез технических требований исключает противоречия внутри массива локализованных технических требований. На его основе разработан ГОСТ Р «Автомобильные транспортные средства специальные с широкими функциональными возможностями. Общие технические требования».



Pages:     | 1 || 3 | 4 |   ...   | 5 |
 

Похожие работы:







 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.